Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

The rule [tex]\( r_{y=x} \circ T_{4,0}(x, y) \)[/tex] is applied to trapezoid ABCD to produce the final image [tex]\( A'' B'' C'' D'' \)[/tex].

Which ordered pairs name the coordinates of vertices of the pre-image, trapezoid ABCD? Select two options.

A. [tex]\((-1,0)\)[/tex]
B. [tex]\((-1,-5)\)[/tex]
C. [tex]\((1,1)\)[/tex]
D. [tex]\((7,0)\)[/tex]
E. [tex]\((7,-5)\)[/tex]


Sagot :

To solve this problem, we'll need to apply a sequence of transformations to the vertices of the pre-image, the trapezoid ABCD. The transformation rule given is [tex]\( r_{y=x} \circ T_{4,0}(x, y) \)[/tex], which means we will first translate the points by 4 units in the x-direction and then reflect the result over the line [tex]\(y = x\)[/tex].

Here are the steps we can follow:

1. Translation:
- The first transformation is [tex]\( T_{4,0} \)[/tex], which translates the points by 4 units in the x-direction.
- For each point [tex]\((x, y)\)[/tex], the new coordinates after translation will be [tex]\( (x + 4, y) \)[/tex].

2. Reflection:
- The second transformation is [tex]\( r_{y=x} \)[/tex], which reflects the points over the line [tex]\( y = x \)[/tex].
- For each point [tex]\((x, y)\)[/tex], the new coordinates after the reflection will be [tex]\((y, x)\)[/tex].

Let's apply these transformations to each of the given points:

1. Starting with the point [tex]\( (-1, 0) \)[/tex]:
- Translating: [tex]\( (-1 + 4, 0) = (3, 0) \)[/tex]
- Reflecting: [tex]\( (0, 3) \)[/tex]

2. Point [tex]\( (-1, -5) \)[/tex]:
- Translating: [tex]\( (-1 + 4, -5) = (3, -5) \)[/tex]
- Reflecting: [tex]\( (-5, 3) \)[/tex]

3. Point [tex]\( (1, 1) \)[/tex]:
- Translating: [tex]\( (1 + 4, 1) = (5, 1) \)[/tex]
- Reflecting: [tex]\( (1, 5) \)[/tex]

4. Point [tex]\( (7, 0) \)[/tex]:
- Translating: [tex]\( (7 + 4, 0) = (11, 0) \)[/tex]
- Reflecting: [tex]\( (0, 11) \)[/tex]

5. Point [tex]\( (7, -5) \)[/tex]:
- Translating: [tex]\( (7 + 4, -5) = (11, -5) \)[/tex]
- Reflecting: [tex]\( (-5, 11) \)[/tex]

From solving the problem, we establish that the correct coordinates of the pre-image vertices are two of these original points which matched as likely producing the final image after transformations:

- Given the results, the correct two options from the calculated pre-images are:
- [tex]\( (-1, 0) \)[/tex]
- [tex]\( (-1, -5) \)[/tex]
- [tex]\( (1, 1) \)[/tex]

So, the vertices of trapezoid ABCD as pre-images are [tex]\((-1, 0)\)[/tex], [tex]\((-1, -5)\)[/tex], and [tex]\((1, 1)\)[/tex].
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.