Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the domain of the step function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex], we need to analyze the components of the function and understand where it is defined.
1. Understanding [tex]\( \lceil 2x \rceil \)[/tex]:
- The function [tex]\( 2x \)[/tex] is simply multiplying [tex]\( x \)[/tex] by 2, which is an operation defined for all real numbers.
- The ceiling function [tex]\( \lceil y \rceil \)[/tex] returns the smallest integer greater than or equal to [tex]\( y \)[/tex]. This function is defined for all real numbers [tex]\( y \)[/tex].
2. Combining the components:
- Since [tex]\( 2x \)[/tex] is defined for all [tex]\( x \in \mathbb{R} \)[/tex], the expression [tex]\( 2x \)[/tex] will always yield a real number.
- Applying the ceiling function to this real number, [tex]\( \lceil 2x \rceil \)[/tex], produces an integer.
- Subtracting 1 from this integer will result in another integer, ensuring that [tex]\( f(x) \)[/tex] will produce an integer for any real number [tex]\( x \)[/tex].
3. Conclusion:
- Since the function [tex]\( \lceil 2x \rceil \)[/tex] is valid for all [tex]\( x \in \mathbb{R} \)[/tex], the function [tex]\( f(x) \)[/tex] will also be defined for all real numbers [tex]\( x \)[/tex].
Thus, the domain of the function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex] is all real numbers, and our answer is:
[tex]\[ \boxed{\{x \mid x \text{ is a real number} \}} \][/tex]
1. Understanding [tex]\( \lceil 2x \rceil \)[/tex]:
- The function [tex]\( 2x \)[/tex] is simply multiplying [tex]\( x \)[/tex] by 2, which is an operation defined for all real numbers.
- The ceiling function [tex]\( \lceil y \rceil \)[/tex] returns the smallest integer greater than or equal to [tex]\( y \)[/tex]. This function is defined for all real numbers [tex]\( y \)[/tex].
2. Combining the components:
- Since [tex]\( 2x \)[/tex] is defined for all [tex]\( x \in \mathbb{R} \)[/tex], the expression [tex]\( 2x \)[/tex] will always yield a real number.
- Applying the ceiling function to this real number, [tex]\( \lceil 2x \rceil \)[/tex], produces an integer.
- Subtracting 1 from this integer will result in another integer, ensuring that [tex]\( f(x) \)[/tex] will produce an integer for any real number [tex]\( x \)[/tex].
3. Conclusion:
- Since the function [tex]\( \lceil 2x \rceil \)[/tex] is valid for all [tex]\( x \in \mathbb{R} \)[/tex], the function [tex]\( f(x) \)[/tex] will also be defined for all real numbers [tex]\( x \)[/tex].
Thus, the domain of the function [tex]\( f(x) = \lceil 2x \rceil - 1 \)[/tex] is all real numbers, and our answer is:
[tex]\[ \boxed{\{x \mid x \text{ is a real number} \}} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.