Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the difference of the rational expressions [tex]\(\frac{4c}{c+2}\)[/tex] and [tex]\(\frac{4c-7}{c-9}\)[/tex] with unlike denominators, follow these steps:
1. Identify the Least Common Denominator (LCD):
- The denominators for the given rational expressions are [tex]\( c+2 \)[/tex] and [tex]\( c-9 \)[/tex].
- Since these denominators are distinct and have no common factors, the least common denominator (LCD) is the product of both denominators: [tex]\( (c+2)(c-9) \)[/tex].
Thus, the statement should be:
The LCD is [tex]\( (c+2)(c-9) \)[/tex].
2. Create Equivalent Rational Expressions with a Common Denominator:
- For the rational expression [tex]\(\frac{4c}{c+2}\)[/tex]:
- To get the common denominator [tex]\( (c+2)(c-9) \)[/tex], multiply both the numerator and the denominator by the missing factor [tex]\( c-9 \)[/tex].
So, the statement becomes:
Both the numerator and denominator of the rational expression [tex]\(\frac{4c}{c+2}\)[/tex] are multiplied by [tex]\( c-9 \)[/tex] to create an equivalent rational expression with a common denominator.
- For the rational expression [tex]\(\frac{4c-7}{c-9}\)[/tex]:
- To get the common denominator [tex]\( (c+2)(c-9) \)[/tex], multiply both the numerator and the denominator by the missing factor [tex]\( c+2 \)[/tex].
Thus, the statement is:
Both the numerator and denominator of the rational expression [tex]\(\frac{4c-7}{c-9}\)[/tex] are multiplied by [tex]\( c+2 \)[/tex] to create an equivalent rational expression with a common denominator.
Putting it all together, the completed statements are:
1. The LCD is [tex]\((c+2)(c-9)\)[/tex].
2. Both the numerator and denominator of the rational expression [tex]\(\frac{4c}{c+2}\)[/tex] are multiplied by [tex]\( c-9 \)[/tex] to create an equivalent rational expression with a common denominator.
3. Both the numerator and denominator of the rational expression [tex]\(\frac{4c-7}{c-9}\)[/tex] are multiplied by [tex]\( c+2 \)[/tex] to create an equivalent rational expression with a common denominator.
1. Identify the Least Common Denominator (LCD):
- The denominators for the given rational expressions are [tex]\( c+2 \)[/tex] and [tex]\( c-9 \)[/tex].
- Since these denominators are distinct and have no common factors, the least common denominator (LCD) is the product of both denominators: [tex]\( (c+2)(c-9) \)[/tex].
Thus, the statement should be:
The LCD is [tex]\( (c+2)(c-9) \)[/tex].
2. Create Equivalent Rational Expressions with a Common Denominator:
- For the rational expression [tex]\(\frac{4c}{c+2}\)[/tex]:
- To get the common denominator [tex]\( (c+2)(c-9) \)[/tex], multiply both the numerator and the denominator by the missing factor [tex]\( c-9 \)[/tex].
So, the statement becomes:
Both the numerator and denominator of the rational expression [tex]\(\frac{4c}{c+2}\)[/tex] are multiplied by [tex]\( c-9 \)[/tex] to create an equivalent rational expression with a common denominator.
- For the rational expression [tex]\(\frac{4c-7}{c-9}\)[/tex]:
- To get the common denominator [tex]\( (c+2)(c-9) \)[/tex], multiply both the numerator and the denominator by the missing factor [tex]\( c+2 \)[/tex].
Thus, the statement is:
Both the numerator and denominator of the rational expression [tex]\(\frac{4c-7}{c-9}\)[/tex] are multiplied by [tex]\( c+2 \)[/tex] to create an equivalent rational expression with a common denominator.
Putting it all together, the completed statements are:
1. The LCD is [tex]\((c+2)(c-9)\)[/tex].
2. Both the numerator and denominator of the rational expression [tex]\(\frac{4c}{c+2}\)[/tex] are multiplied by [tex]\( c-9 \)[/tex] to create an equivalent rational expression with a common denominator.
3. Both the numerator and denominator of the rational expression [tex]\(\frac{4c-7}{c-9}\)[/tex] are multiplied by [tex]\( c+2 \)[/tex] to create an equivalent rational expression with a common denominator.
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.