Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Get detailed and precise answers to your questions from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the factors of the polynomial [tex]\(x^3 - 9x^2 + 5x - 45\)[/tex] by grouping, let's follow the steps for factoring by grouping.
First, we need to group the terms in pairs in such a way that we can factor out a common factor from each group. Here is the polynomial:
[tex]\[ x^3 - 9x^2 + 5x - 45 \][/tex]
1. Group the terms:
Group the polynomial into two pairs:
[tex]\[ (x^3 - 9x^2) + (5x - 45) \][/tex]
2. Factor out the greatest common factor from each pair:
- For the first group [tex]\(x^3 - 9x^2\)[/tex], factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x - 9) \][/tex]
- For the second group [tex]\(5x - 45\)[/tex], factor out [tex]\(5\)[/tex]:
[tex]\[ 5(x - 9) \][/tex]
3. Rewrite the expression showing the grouped pairs:
[tex]\[ x^2(x - 9) + 5(x - 9) \][/tex]
4. Factor out the common binomial factor [tex]\((x - 9)\)[/tex]:
Notice that [tex]\((x - 9)\)[/tex] is a common factor in both terms:
[tex]\[ (x^2 + 5)(x - 9) \][/tex]
Therefore, the factors of the polynomial [tex]\(x^3 - 9x^2 + 5x - 45\)[/tex] by grouping are [tex]\((x^2 + 5)(x - 9)\)[/tex].
So, the correct choice from the given options is:
[tex]\[ x^2(x - 9) - 5(x - 9) \][/tex]
First, we need to group the terms in pairs in such a way that we can factor out a common factor from each group. Here is the polynomial:
[tex]\[ x^3 - 9x^2 + 5x - 45 \][/tex]
1. Group the terms:
Group the polynomial into two pairs:
[tex]\[ (x^3 - 9x^2) + (5x - 45) \][/tex]
2. Factor out the greatest common factor from each pair:
- For the first group [tex]\(x^3 - 9x^2\)[/tex], factor out [tex]\(x^2\)[/tex]:
[tex]\[ x^2(x - 9) \][/tex]
- For the second group [tex]\(5x - 45\)[/tex], factor out [tex]\(5\)[/tex]:
[tex]\[ 5(x - 9) \][/tex]
3. Rewrite the expression showing the grouped pairs:
[tex]\[ x^2(x - 9) + 5(x - 9) \][/tex]
4. Factor out the common binomial factor [tex]\((x - 9)\)[/tex]:
Notice that [tex]\((x - 9)\)[/tex] is a common factor in both terms:
[tex]\[ (x^2 + 5)(x - 9) \][/tex]
Therefore, the factors of the polynomial [tex]\(x^3 - 9x^2 + 5x - 45\)[/tex] by grouping are [tex]\((x^2 + 5)(x - 9)\)[/tex].
So, the correct choice from the given options is:
[tex]\[ x^2(x - 9) - 5(x - 9) \][/tex]
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.