Westonci.ca offers quick and accurate answers to your questions. Join our community and get the insights you need today. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Sure, Erika! To solve the exponential equation [tex]\(50^x = 17\)[/tex], you can follow these steps:
1. Understand the Goal:
The goal is to isolate the variable [tex]\(x\)[/tex] in the equation [tex]\(50^x = 17\)[/tex].
2. Use Logarithms:
To isolate [tex]\(x\)[/tex], we can use logarithms, which will help us deal with the exponent. Taking the natural logarithm (denoted as [tex]\(\ln\)[/tex]) is a common approach. You could also use the logarithm with any other base, such as base 10 (denoted as [tex]\(\log\)[/tex]).
3. Apply the Natural Logarithm to Both Sides:
Take the natural logarithm of both sides of the equation to get:
[tex]\[ \ln(50^x) = \ln(17) \][/tex]
4. Use the Power Rule of Logarithms:
One of the logarithm properties, known as the power rule, allows us to bring the exponent [tex]\(x\)[/tex] in front of the logarithm:
[tex]\[ x \cdot \ln(50) = \ln(17) \][/tex]
5. Isolate [tex]\(x\)[/tex]:
To solve for [tex]\(x\)[/tex], divide both sides of the equation by [tex]\(\ln(50)\)[/tex]:
[tex]\[ x = \frac{\ln(17)}{\ln(50)} \][/tex]
6. Calculate the Values:
Now, you can calculate the natural logarithms using a calculator:
[tex]\[ \ln(17) \approx 2.833213344 \][/tex]
[tex]\[ \ln(50) \approx 3.912023005 \][/tex]
So, you get:
[tex]\[ x = \frac{2.833213344}{3.912023005} \approx 0.7242322808748767 \][/tex]
Therefore, the solution to the equation [tex]\(50^x = 17\)[/tex] is [tex]\(x \approx 0.724\)[/tex]. This means you need to raise 50 to approximately 0.724 to get close to 17.
1. Understand the Goal:
The goal is to isolate the variable [tex]\(x\)[/tex] in the equation [tex]\(50^x = 17\)[/tex].
2. Use Logarithms:
To isolate [tex]\(x\)[/tex], we can use logarithms, which will help us deal with the exponent. Taking the natural logarithm (denoted as [tex]\(\ln\)[/tex]) is a common approach. You could also use the logarithm with any other base, such as base 10 (denoted as [tex]\(\log\)[/tex]).
3. Apply the Natural Logarithm to Both Sides:
Take the natural logarithm of both sides of the equation to get:
[tex]\[ \ln(50^x) = \ln(17) \][/tex]
4. Use the Power Rule of Logarithms:
One of the logarithm properties, known as the power rule, allows us to bring the exponent [tex]\(x\)[/tex] in front of the logarithm:
[tex]\[ x \cdot \ln(50) = \ln(17) \][/tex]
5. Isolate [tex]\(x\)[/tex]:
To solve for [tex]\(x\)[/tex], divide both sides of the equation by [tex]\(\ln(50)\)[/tex]:
[tex]\[ x = \frac{\ln(17)}{\ln(50)} \][/tex]
6. Calculate the Values:
Now, you can calculate the natural logarithms using a calculator:
[tex]\[ \ln(17) \approx 2.833213344 \][/tex]
[tex]\[ \ln(50) \approx 3.912023005 \][/tex]
So, you get:
[tex]\[ x = \frac{2.833213344}{3.912023005} \approx 0.7242322808748767 \][/tex]
Therefore, the solution to the equation [tex]\(50^x = 17\)[/tex] is [tex]\(x \approx 0.724\)[/tex]. This means you need to raise 50 to approximately 0.724 to get close to 17.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.