Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the energy of a photon given its frequency and Planck's constant, we use the formula for energy of a photon:
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \)[/tex] Joule-seconds),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(7.3 \times 10^{-17}\)[/tex] Hertz).
First, we substitute the given values into the formula:
[tex]\[ E = (6.63 \times 10^{-34}) \cdot (7.3 \times 10^{-17}) \][/tex]
Perform the multiplication:
[tex]\[ E = 6.63 \times 7.3 \times 10^{-34} \times 10^{-17} \][/tex]
[tex]\[ E = 48.399 \times 10^{-51} \][/tex]
Next, we simplify the result to match the form [tex]\( a \times 10^b \)[/tex], aiming for [tex]\(10^{-50}\)[/tex]:
[tex]\[ E = 4.8399 \times 10^{-50} \][/tex]
To express this value to the nearest tenth place, we look at the first decimal place and round accordingly:
[tex]\[ 4.8399 \approx 4.8 \][/tex]
Therefore, the energy of the photon is:
[tex]\[ 4.8 \times 10^{-50} \][/tex] Joules.
[tex]\[ E = h \cdot f \][/tex]
where:
- [tex]\( E \)[/tex] is the energy of the photon,
- [tex]\( h \)[/tex] is Planck's constant ([tex]\(6.63 \times 10^{-34} \)[/tex] Joule-seconds),
- [tex]\( f \)[/tex] is the frequency of the photon ([tex]\(7.3 \times 10^{-17}\)[/tex] Hertz).
First, we substitute the given values into the formula:
[tex]\[ E = (6.63 \times 10^{-34}) \cdot (7.3 \times 10^{-17}) \][/tex]
Perform the multiplication:
[tex]\[ E = 6.63 \times 7.3 \times 10^{-34} \times 10^{-17} \][/tex]
[tex]\[ E = 48.399 \times 10^{-51} \][/tex]
Next, we simplify the result to match the form [tex]\( a \times 10^b \)[/tex], aiming for [tex]\(10^{-50}\)[/tex]:
[tex]\[ E = 4.8399 \times 10^{-50} \][/tex]
To express this value to the nearest tenth place, we look at the first decimal place and round accordingly:
[tex]\[ 4.8399 \approx 4.8 \][/tex]
Therefore, the energy of the photon is:
[tex]\[ 4.8 \times 10^{-50} \][/tex] Joules.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.