At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Explore a wealth of knowledge from professionals across various disciplines on our comprehensive Q&A platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To solve the problem of finding which equation correctly represents the line passing through the points [tex]\( Q(0,1) \)[/tex] and [tex]\( R(2,7) \)[/tex], we need to proceed through several steps:
1. Calculate the Slope of the Line:
The formula for the slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\( Q(0,1) \)[/tex] and [tex]\( R(2,7) \)[/tex]:
[tex]\[ m = \frac{7 - 1}{2 - 0} = \frac{6}{2} = 3 \][/tex]
Thus, the slope of the line is [tex]\( 3 \)[/tex].
2. Determine the Correct Equation:
Now we need to check each equation given and see which one has the correct slope and passes through the points.
- Option 1: [tex]\( y - 1 = 6x \)[/tex]
- Rearrange to the slope-intercept form, [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = 6x + 1 \][/tex]
- The slope here is [tex]\( 6 \)[/tex], which does not match the calculated slope of [tex]\( 3 \)[/tex].
- Option 2: [tex]\( y - 1 = 3x \)[/tex]
- Rearrange to the slope-intercept form:
[tex]\[ y = 3x + 1 \][/tex]
- The slope here is [tex]\( 3 \)[/tex], which matches our calculated slope, and it passes through [tex]\( Q(0,1) \)[/tex] because plugging [tex]\( x = 0 \)[/tex] gives [tex]\( y = 1 \)[/tex].
- Option 3: [tex]\( y - 7 = 2x - 6 \)[/tex]
- Simplify it:
[tex]\[ y - 7 = 2x - 6 \implies y = 2x + 1 \][/tex]
- The slope here is [tex]\( 2 \)[/tex], which does not match our calculated slope of [tex]\( 3 \)[/tex].
- Option 4: [tex]\( y - 7 = x - 2 \)[/tex]
- Simplify it:
[tex]\[ y - 7 = x - 2 \implies y = x + 5 \][/tex]
- The slope here is [tex]\( 1 \)[/tex], which also does not match our calculated slope of [tex]\( 3 \)[/tex].
3. Conclusion:
Among the given options, only the equation in Option 2, [tex]\( y - 1 = 3x \)[/tex], has the correct slope of [tex]\( 3 \)[/tex] and correctly represents the line passing through the points [tex]\( Q(0,1) \)[/tex] and [tex]\( R(2,7) \)[/tex].
Hence, the correct option is:
[tex]\[ \boxed{y - 1 = 3x} \][/tex]
1. Calculate the Slope of the Line:
The formula for the slope [tex]\( m \)[/tex] of a line passing through two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Given the points [tex]\( Q(0,1) \)[/tex] and [tex]\( R(2,7) \)[/tex]:
[tex]\[ m = \frac{7 - 1}{2 - 0} = \frac{6}{2} = 3 \][/tex]
Thus, the slope of the line is [tex]\( 3 \)[/tex].
2. Determine the Correct Equation:
Now we need to check each equation given and see which one has the correct slope and passes through the points.
- Option 1: [tex]\( y - 1 = 6x \)[/tex]
- Rearrange to the slope-intercept form, [tex]\( y = mx + b \)[/tex]:
[tex]\[ y = 6x + 1 \][/tex]
- The slope here is [tex]\( 6 \)[/tex], which does not match the calculated slope of [tex]\( 3 \)[/tex].
- Option 2: [tex]\( y - 1 = 3x \)[/tex]
- Rearrange to the slope-intercept form:
[tex]\[ y = 3x + 1 \][/tex]
- The slope here is [tex]\( 3 \)[/tex], which matches our calculated slope, and it passes through [tex]\( Q(0,1) \)[/tex] because plugging [tex]\( x = 0 \)[/tex] gives [tex]\( y = 1 \)[/tex].
- Option 3: [tex]\( y - 7 = 2x - 6 \)[/tex]
- Simplify it:
[tex]\[ y - 7 = 2x - 6 \implies y = 2x + 1 \][/tex]
- The slope here is [tex]\( 2 \)[/tex], which does not match our calculated slope of [tex]\( 3 \)[/tex].
- Option 4: [tex]\( y - 7 = x - 2 \)[/tex]
- Simplify it:
[tex]\[ y - 7 = x - 2 \implies y = x + 5 \][/tex]
- The slope here is [tex]\( 1 \)[/tex], which also does not match our calculated slope of [tex]\( 3 \)[/tex].
3. Conclusion:
Among the given options, only the equation in Option 2, [tex]\( y - 1 = 3x \)[/tex], has the correct slope of [tex]\( 3 \)[/tex] and correctly represents the line passing through the points [tex]\( Q(0,1) \)[/tex] and [tex]\( R(2,7) \)[/tex].
Hence, the correct option is:
[tex]\[ \boxed{y - 1 = 3x} \][/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.