Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the completely factored form of [tex]\(d^4 - 81\)[/tex], we begin by recognizing that [tex]\(81\)[/tex] is a perfect square, as [tex]\(81 = 9^2\)[/tex]. Thus, we can rewrite the expression in a form that highlights this relationship:
[tex]\[ d^4 - 81 = d^4 - 9^2. \][/tex]
We notice that this fits the pattern of a difference of squares, [tex]\(a^2 - b^2\)[/tex], which factors into [tex]\((a - b)(a + b)\)[/tex]. Here, [tex]\(a = d^2\)[/tex] and [tex]\(b = 9\)[/tex]:
[tex]\[ d^4 - 81 = (d^2)^2 - 9^2 = (d^2 - 9)(d^2 + 9). \][/tex]
Next, we can factor the term [tex]\(d^2 - 9\)[/tex] further, as it is also a difference of squares. We apply the same pattern again, where [tex]\(d^2 - 9\)[/tex] can be written as:
[tex]\[ d^2 - 9 = (d - 3)(d + 3). \][/tex]
Thus, substituting back, we have:
[tex]\[ d^4 - 81 = (d^2 - 9)(d^2 + 9) = (d - 3)(d + 3)(d^2 + 9). \][/tex]
The term [tex]\(d^2 + 9\)[/tex] cannot be factored further as a real number expression since it does not fit the pattern for a difference of squares or any other recognizable factoring pattern for real numbers.
Hence, the completely factored form of [tex]\(d^4 - 81\)[/tex] is:
[tex]\[ (d - 3)(d + 3)(d^2 + 9). \][/tex]
[tex]\[ d^4 - 81 = d^4 - 9^2. \][/tex]
We notice that this fits the pattern of a difference of squares, [tex]\(a^2 - b^2\)[/tex], which factors into [tex]\((a - b)(a + b)\)[/tex]. Here, [tex]\(a = d^2\)[/tex] and [tex]\(b = 9\)[/tex]:
[tex]\[ d^4 - 81 = (d^2)^2 - 9^2 = (d^2 - 9)(d^2 + 9). \][/tex]
Next, we can factor the term [tex]\(d^2 - 9\)[/tex] further, as it is also a difference of squares. We apply the same pattern again, where [tex]\(d^2 - 9\)[/tex] can be written as:
[tex]\[ d^2 - 9 = (d - 3)(d + 3). \][/tex]
Thus, substituting back, we have:
[tex]\[ d^4 - 81 = (d^2 - 9)(d^2 + 9) = (d - 3)(d + 3)(d^2 + 9). \][/tex]
The term [tex]\(d^2 + 9\)[/tex] cannot be factored further as a real number expression since it does not fit the pattern for a difference of squares or any other recognizable factoring pattern for real numbers.
Hence, the completely factored form of [tex]\(d^4 - 81\)[/tex] is:
[tex]\[ (d - 3)(d + 3)(d^2 + 9). \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.