Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Get quick and reliable solutions to your questions from a community of experienced experts on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine the location of the original vertex [tex]\( Q \)[/tex], before the transformation [tex]\( R_{0,90} \)[/tex], we need to consider the nature of the transformation rule. The rule [tex]\( R_{0,90} \)[/tex] denotes a 90-degree rotation counterclockwise around the origin. To find the original position of a vertex after such a rotation, we can instead consider applying a 90-degree clockwise rotation to the transformed vertex.
The general rule for rotating a point [tex]\((x, y)\)[/tex] 90 degrees counterclockwise is to transform it to [tex]\((-y, x)\)[/tex]. Conversely, to reverse this and rotate a point [tex]\((x', y')\)[/tex] 90 degrees clockwise to recover the original point [tex]\((x, y)\)[/tex], we use the transformation [tex]\((x', y') \to (y', -x')\)[/tex].
Given the transformed coordinates of [tex]\(Q'\)[/tex] are [tex]\((-3, 4)\)[/tex]:
1. Let the coordinates of [tex]\( Q' \)[/tex] be [tex]\((-3, 4)\)[/tex]. Here [tex]\( x' = -3 \)[/tex] and [tex]\( y' = 4 \)[/tex].
2. Applying the rule for a 90-degree clockwise rotation:
[tex]\[ x = y' = 4 \][/tex]
[tex]\[ y = -x' = -(-3) = 3 \][/tex]
Therefore, the original coordinates of [tex]\( Q \)[/tex] are [tex]\((4, 3)\)[/tex].
So, the location of [tex]\( Q \)[/tex] is:
[tex]\[ (4, 3) \][/tex]
Thus, the correct answer is [tex]\((4, 3)\)[/tex].
The general rule for rotating a point [tex]\((x, y)\)[/tex] 90 degrees counterclockwise is to transform it to [tex]\((-y, x)\)[/tex]. Conversely, to reverse this and rotate a point [tex]\((x', y')\)[/tex] 90 degrees clockwise to recover the original point [tex]\((x, y)\)[/tex], we use the transformation [tex]\((x', y') \to (y', -x')\)[/tex].
Given the transformed coordinates of [tex]\(Q'\)[/tex] are [tex]\((-3, 4)\)[/tex]:
1. Let the coordinates of [tex]\( Q' \)[/tex] be [tex]\((-3, 4)\)[/tex]. Here [tex]\( x' = -3 \)[/tex] and [tex]\( y' = 4 \)[/tex].
2. Applying the rule for a 90-degree clockwise rotation:
[tex]\[ x = y' = 4 \][/tex]
[tex]\[ y = -x' = -(-3) = 3 \][/tex]
Therefore, the original coordinates of [tex]\( Q \)[/tex] are [tex]\((4, 3)\)[/tex].
So, the location of [tex]\( Q \)[/tex] is:
[tex]\[ (4, 3) \][/tex]
Thus, the correct answer is [tex]\((4, 3)\)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.