Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover detailed solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve this step-by-step:
1. Identify the Slope of Line QR:
The given equation of line QR is:
[tex]\[ y = \frac{-1}{2}x + 1 \][/tex]
This is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Here, the slope [tex]\( m \)[/tex] of line QR is [tex]\( \frac{-1}{2} \)[/tex].
2. Find the Slope of the Perpendicular Line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line. The negative reciprocal of [tex]\( \frac{-1}{2} \)[/tex] is [tex]\( 2 \)[/tex]. Therefore, the slope of the perpendicular line is [tex]\( 2 \)[/tex].
3. Use the Point-Slope Form to Find the Y-Intercept:
We need to find the equation of the line with the slope [tex]\( 2 \)[/tex] that passes through the point (5, 6). The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
We know [tex]\( m = 2 \)[/tex], so we substitute [tex]\( m \)[/tex], [tex]\( x = 5 \)[/tex], and [tex]\( y = 6 \)[/tex] into the equation to find [tex]\( b \)[/tex]:
[tex]\[ 6 = 2 \cdot 5 + b \][/tex]
Simplifying this:
[tex]\[ 6 = 10 + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = 6 - 10 \][/tex]
[tex]\[ b = -4 \][/tex]
4. Write the Final Equation:
Now that we have the slope and the y-intercept, we can write the equation of the line in slope-intercept form:
[tex]\[ y = 2x - 4 \][/tex]
Thus, the equation of the line perpendicular to line QR and passing through the point (5, 6) is:
[tex]\[ \boxed{y = 2x - 4} \][/tex]
1. Identify the Slope of Line QR:
The given equation of line QR is:
[tex]\[ y = \frac{-1}{2}x + 1 \][/tex]
This is in the slope-intercept form [tex]\( y = mx + b \)[/tex], where [tex]\( m \)[/tex] is the slope. Here, the slope [tex]\( m \)[/tex] of line QR is [tex]\( \frac{-1}{2} \)[/tex].
2. Find the Slope of the Perpendicular Line:
The slope of a line perpendicular to another line is the negative reciprocal of the slope of the original line. The negative reciprocal of [tex]\( \frac{-1}{2} \)[/tex] is [tex]\( 2 \)[/tex]. Therefore, the slope of the perpendicular line is [tex]\( 2 \)[/tex].
3. Use the Point-Slope Form to Find the Y-Intercept:
We need to find the equation of the line with the slope [tex]\( 2 \)[/tex] that passes through the point (5, 6). The equation of a line in slope-intercept form is:
[tex]\[ y = mx + b \][/tex]
We know [tex]\( m = 2 \)[/tex], so we substitute [tex]\( m \)[/tex], [tex]\( x = 5 \)[/tex], and [tex]\( y = 6 \)[/tex] into the equation to find [tex]\( b \)[/tex]:
[tex]\[ 6 = 2 \cdot 5 + b \][/tex]
Simplifying this:
[tex]\[ 6 = 10 + b \][/tex]
Solving for [tex]\( b \)[/tex]:
[tex]\[ b = 6 - 10 \][/tex]
[tex]\[ b = -4 \][/tex]
4. Write the Final Equation:
Now that we have the slope and the y-intercept, we can write the equation of the line in slope-intercept form:
[tex]\[ y = 2x - 4 \][/tex]
Thus, the equation of the line perpendicular to line QR and passing through the point (5, 6) is:
[tex]\[ \boxed{y = 2x - 4} \][/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.