Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To find the greatest common factor (GCF) of the given terms [tex]\(42 a^5 b^3\)[/tex], [tex]\(36 a^3 b^4\)[/tex], and [tex]\(42 a b^4\)[/tex], we need to determine the common factor in terms of both coefficients and variables.
### 1. Coefficients:
The coefficients of the terms are [tex]\(42\)[/tex], [tex]\(36\)[/tex], and [tex]\(42\)[/tex].
- We need to find the GCF of these numbers:
- The prime factorization of [tex]\(42\)[/tex] is [tex]\(2 \times 3 \times 7\)[/tex].
- The prime factorization of [tex]\(36\)[/tex] is [tex]\(2^2 \times 3^2\)[/tex].
- Again, the prime factorization of [tex]\(42\)[/tex] is [tex]\(2 \times 3 \times 7\)[/tex].
- The common prime factors are [tex]\(2\)[/tex] and [tex]\(3\)[/tex], each raised to the lowest power found in each factorization:
- For [tex]\(2\)[/tex], the lowest power is [tex]\(2^1\)[/tex].
- For [tex]\(3\)[/tex], the lowest power is [tex]\(3^1\)[/tex].
- Thus, the numerical GCF:
[tex]\[ 2 \times 3 = 6 \][/tex]
### 2. Variables:
Now, we analyze the variables [tex]\(a\)[/tex] and [tex]\(b\)[/tex] with their respective exponents.
- For [tex]\(a\)[/tex]:
- In [tex]\(42 a^5 b^3\)[/tex], the exponent of [tex]\(a\)[/tex] is [tex]\(5\)[/tex].
- In [tex]\(36 a^3 b^4\)[/tex], the exponent of [tex]\(a\)[/tex] is [tex]\(3\)[/tex].
- In [tex]\(42 a b^4\)[/tex], the exponent of [tex]\(a\)[/tex] is [tex]\(1\)[/tex].
The minimum exponent of [tex]\(a\)[/tex] is [tex]\(1\)[/tex].
- For [tex]\(b\)[/tex]:
- In [tex]\(42 a^5 b^3\)[/tex], the exponent of [tex]\(b\)[/tex] is [tex]\(3\)[/tex].
- In [tex]\(36 a^3 b^4\)[/tex], the exponent of [tex]\(b\)[/tex] is [tex]\(4\)[/tex].
- In [tex]\(42 a b^4\)[/tex], the exponent of [tex]\(b\)[/tex] is [tex]\(4\)[/tex].
The minimum exponent of [tex]\(b\)[/tex] is [tex]\(3\)[/tex].
### 3. Combine the factors:
Putting it all together, the GCF is the product of the numerical GCF and the variable factors with their minimum exponents:
[tex]\[ \text{GCF} = 6 \times a^1 \times b^3 = 6a b^3 \][/tex]
Thus, the greatest common factor of [tex]\(42 a^5 b^3\)[/tex], [tex]\(36 a^3 b^4\)[/tex], and [tex]\(42 a b^4\)[/tex] is:
[tex]\[ \boxed{6ab^3} \][/tex]
Therefore, none of the given options are correct.
### 1. Coefficients:
The coefficients of the terms are [tex]\(42\)[/tex], [tex]\(36\)[/tex], and [tex]\(42\)[/tex].
- We need to find the GCF of these numbers:
- The prime factorization of [tex]\(42\)[/tex] is [tex]\(2 \times 3 \times 7\)[/tex].
- The prime factorization of [tex]\(36\)[/tex] is [tex]\(2^2 \times 3^2\)[/tex].
- Again, the prime factorization of [tex]\(42\)[/tex] is [tex]\(2 \times 3 \times 7\)[/tex].
- The common prime factors are [tex]\(2\)[/tex] and [tex]\(3\)[/tex], each raised to the lowest power found in each factorization:
- For [tex]\(2\)[/tex], the lowest power is [tex]\(2^1\)[/tex].
- For [tex]\(3\)[/tex], the lowest power is [tex]\(3^1\)[/tex].
- Thus, the numerical GCF:
[tex]\[ 2 \times 3 = 6 \][/tex]
### 2. Variables:
Now, we analyze the variables [tex]\(a\)[/tex] and [tex]\(b\)[/tex] with their respective exponents.
- For [tex]\(a\)[/tex]:
- In [tex]\(42 a^5 b^3\)[/tex], the exponent of [tex]\(a\)[/tex] is [tex]\(5\)[/tex].
- In [tex]\(36 a^3 b^4\)[/tex], the exponent of [tex]\(a\)[/tex] is [tex]\(3\)[/tex].
- In [tex]\(42 a b^4\)[/tex], the exponent of [tex]\(a\)[/tex] is [tex]\(1\)[/tex].
The minimum exponent of [tex]\(a\)[/tex] is [tex]\(1\)[/tex].
- For [tex]\(b\)[/tex]:
- In [tex]\(42 a^5 b^3\)[/tex], the exponent of [tex]\(b\)[/tex] is [tex]\(3\)[/tex].
- In [tex]\(36 a^3 b^4\)[/tex], the exponent of [tex]\(b\)[/tex] is [tex]\(4\)[/tex].
- In [tex]\(42 a b^4\)[/tex], the exponent of [tex]\(b\)[/tex] is [tex]\(4\)[/tex].
The minimum exponent of [tex]\(b\)[/tex] is [tex]\(3\)[/tex].
### 3. Combine the factors:
Putting it all together, the GCF is the product of the numerical GCF and the variable factors with their minimum exponents:
[tex]\[ \text{GCF} = 6 \times a^1 \times b^3 = 6a b^3 \][/tex]
Thus, the greatest common factor of [tex]\(42 a^5 b^3\)[/tex], [tex]\(36 a^3 b^4\)[/tex], and [tex]\(42 a b^4\)[/tex] is:
[tex]\[ \boxed{6ab^3} \][/tex]
Therefore, none of the given options are correct.
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.