Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get expert answers to your questions quickly and accurately from our dedicated community of professionals. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.

Multiply and simplify the expression [tex]\((2\sqrt{-25})(4 - \sqrt{-100})\)[/tex].

Show all work.


Sagot :

To multiply the expressions [tex]\((2, \sqrt{-25})(4-\sqrt{-100})\)[/tex], we need to simplify each term first and then perform the multiplication step-by-step.

### Step 1: Simplify the square roots of negative numbers
1. [tex]\(\sqrt{-25}\)[/tex]:
- We know that [tex]\(\sqrt{-1} = i\)[/tex], where [tex]\(i\)[/tex] is the imaginary unit.
- Therefore, [tex]\(\sqrt{-25} = \sqrt{25} \cdot \sqrt{-1} = 5i\)[/tex].

2. [tex]\(\sqrt{-100}\)[/tex]:
- Similarly, [tex]\(\sqrt{-100} = \sqrt{100} \cdot \sqrt{-1} = 10i\)[/tex].

### Step 2: Substitute the simplified values into the expression
The expression now becomes:
[tex]\[ (2 \times 5i)(4 - 10i) \][/tex]

### Step 3: Perform the multiplication
Let's break it down into steps:
1. Compute [tex]\(2 \times 5i\)[/tex]:
[tex]\[ 2 \times 5i = 10i \][/tex]

2. Multiply [tex]\(10i\)[/tex] by [tex]\((4 - 10i)\)[/tex]:
- Use the distributive property to expand the multiplication.
[tex]\[ 10i \times (4 - 10i) = 10i \times 4 + 10i \times (-10i) \][/tex]

- Simplify each term:
- [tex]\(10i \times 4 = 40i\)[/tex]
- [tex]\(10i \times -10i = -100i^2\)[/tex]
Remember that [tex]\(i^2 = -1\)[/tex], so:
[tex]\( -100i^2 = -100 \times (-1) = 100 \)[/tex]

3. Combine the results:
[tex]\[ 40i + 100 \][/tex]

### Step 4: Write the final result in standard form
Express the final result as a complex number in the form [tex]\(a + bi\)[/tex]:
[tex]\[ 40i + 100 = 100 + 40i \][/tex]

Thus, the product of [tex]\((2 \cdot \sqrt{-25})(4 - \sqrt{-100})\)[/tex] is:
[tex]\[ 100 + 40i \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.