Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.

Find the value of [tex]\(x\)[/tex] in the equation:
[tex]\[
\log (15 - 5x) - \log (3x - 2) - 2 = 0
\][/tex]


Sagot :

To solve the equation [tex]\(\log (15 - 5x) - \log (3x - 2) - 2 = 0\)[/tex] for [tex]\(x\)[/tex], let's follow these steps:

1. Simplify the Logarithmic Expression:
Use the properties of logarithms to combine the logs:
[tex]\[ \log (15 - 5x) - \log (3x - 2) = \log \left( \frac{15 - 5x}{3x - 2} \right) \][/tex]
Hence, the equation becomes:
[tex]\[ \log \left( \frac{15 - 5x}{3x - 2} \right) - 2 = 0 \][/tex]

2. Isolate the Logarithm:
Add 2 to both sides of the equation:
[tex]\[ \log \left( \frac{15 - 5x}{3x - 2} \right) = 2 \][/tex]

3. Convert Logarithmic Form to Exponential Form:
Recall that if [tex]\(\log_a (b) = c\)[/tex], then [tex]\(a^c = b\)[/tex]. Here, the logarithm is in base 10 by default:
[tex]\[ 10^2 = \frac{15 - 5x}{3x - 2} \][/tex]
Therefore:
[tex]\[ 100 = \frac{15 - 5x}{3x - 2} \][/tex]

4. Solve the Resulting Equation:
Multiply both sides by [tex]\((3x - 2)\)[/tex] to clear the fraction:
[tex]\[ 100(3x - 2) = 15 - 5x \][/tex]
Expand and combine like terms:
[tex]\[ 300x - 200 = 15 - 5x \][/tex]
Add [tex]\(5x\)[/tex] to both sides:
[tex]\[ 300x + 5x - 200 = 15 \][/tex]
Combine like terms:
[tex]\[ 305x - 200 = 15 \][/tex]
Add 200 to both sides:
[tex]\[ 305x = 215 \][/tex]
Finally, divide both sides by 305:
[tex]\[ x = \frac{215}{305} \][/tex]

5. Simplify the Fraction (if needed, though not necessary if the direct answer is known):
Reduce the fraction:
[tex]\[ x = \frac{43}{61} \][/tex]

Given this detailed step-by-step solution, the value of [tex]\( x \)[/tex] that satisfies the equation [tex]\(\log (15 - 5x) - \log (3x - 2) - 2 = 0\)[/tex] is:
[tex]\[ x = \frac{43}{61} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.