Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To solve for [tex]\( y \)[/tex] in the equation [tex]\( 12^{9y} = 7 \)[/tex], we can use logarithms to simplify and solve the equation. Here's a detailed, step-by-step solution:
1. Take the natural logarithm (ln) of both sides of the equation, which will help us bring the exponent down:
[tex]\[ \ln(12^{9y}) = \ln(7) \][/tex]
2. Use the power rule of logarithms to bring down the exponent [tex]\( 9y \)[/tex]:
[tex]\[ 9y \cdot \ln(12) = \ln(7) \][/tex]
3. Isolate [tex]\( y \)[/tex] by dividing both sides of the equation by [tex]\( 9 \cdot \ln(12) \)[/tex]:
[tex]\[ y = \frac{\ln(7)}{9 \cdot \ln(12)} \][/tex]
4. Calculate the natural logarithms of the numbers involved.
[tex]\[ \ln(7) \approx 1.9459101490553132 \][/tex]
[tex]\[ \ln(12) \approx 2.4849066497880004 \][/tex]
5. Substitute these values back into the equation:
[tex]\[ y = \frac{1.9459101490553132}{9 \cdot 2.4849066497880004} \][/tex]
6. Perform the multiplication in the denominator:
[tex]\[ 9 \cdot 2.4849066497880004 = 22.364159848092 \][/tex]
7. Now, divide the numerator by the result of the denominator:
[tex]\[ y = \frac{1.9459101490553132}{22.364159848092} \approx 0.08701020571632734 \][/tex]
8. Round the result to the nearest hundredth:
[tex]\[ y \approx 0.09 \][/tex]
So, the value of [tex]\( y \)[/tex] rounded to the nearest hundredth is [tex]\( \boxed{0.09} \)[/tex].
1. Take the natural logarithm (ln) of both sides of the equation, which will help us bring the exponent down:
[tex]\[ \ln(12^{9y}) = \ln(7) \][/tex]
2. Use the power rule of logarithms to bring down the exponent [tex]\( 9y \)[/tex]:
[tex]\[ 9y \cdot \ln(12) = \ln(7) \][/tex]
3. Isolate [tex]\( y \)[/tex] by dividing both sides of the equation by [tex]\( 9 \cdot \ln(12) \)[/tex]:
[tex]\[ y = \frac{\ln(7)}{9 \cdot \ln(12)} \][/tex]
4. Calculate the natural logarithms of the numbers involved.
[tex]\[ \ln(7) \approx 1.9459101490553132 \][/tex]
[tex]\[ \ln(12) \approx 2.4849066497880004 \][/tex]
5. Substitute these values back into the equation:
[tex]\[ y = \frac{1.9459101490553132}{9 \cdot 2.4849066497880004} \][/tex]
6. Perform the multiplication in the denominator:
[tex]\[ 9 \cdot 2.4849066497880004 = 22.364159848092 \][/tex]
7. Now, divide the numerator by the result of the denominator:
[tex]\[ y = \frac{1.9459101490553132}{22.364159848092} \approx 0.08701020571632734 \][/tex]
8. Round the result to the nearest hundredth:
[tex]\[ y \approx 0.09 \][/tex]
So, the value of [tex]\( y \)[/tex] rounded to the nearest hundredth is [tex]\( \boxed{0.09} \)[/tex].
We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.