Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Join our platform to connect with experts ready to provide accurate answers to your questions in various fields. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Let's go through the problem step-by-step to formulate our solution.
1. Identify Initial Length and Daily Consumption:
- Diep buys a loaf of bread that is initially 65 centimeters long.
- Each day, Diep cuts 15 centimeters of bread for his sandwich.
2. Set Up the Relationship:
- Let [tex]\( l \)[/tex] represent the length of the bread loaf after [tex]\( d \)[/tex] days.
- Initially, when [tex]\( d = 0 \)[/tex], the length [tex]\( l \)[/tex] is 65 centimeters.
- Each day, Diep reduces the length of the loaf by 15 centimeters.
3. Form the Equation:
- After [tex]\( d \)[/tex] days, the new length of the bread, [tex]\( l \)[/tex], is calculated by subtracting the total bread used from the initial length.
- Each day, Diep uses [tex]\( 15 \times d \)[/tex] centimeters of bread.
- Thus, the equation relating [tex]\( l \)[/tex] and [tex]\( d \)[/tex] becomes:
[tex]\[ l = 65 - 15d \][/tex]
4. Determine the Graph Type:
- Since Diep cuts the bread once each day, the length [tex]\( l \)[/tex] only changes at discrete time intervals (each day).
- Therefore, the graph of the equation should be discrete because [tex]\( l \)[/tex] does not change continuously but rather in discrete steps.
Based on this detailed derivation, the appropriate expression and characteristic of the graph are:
[tex]\[ l = 65 - 15d; \text{discrete} \][/tex]
Among the provided options, the correct one is:
[tex]\[ l = 65 - 15d; \text{discrete} \][/tex]
1. Identify Initial Length and Daily Consumption:
- Diep buys a loaf of bread that is initially 65 centimeters long.
- Each day, Diep cuts 15 centimeters of bread for his sandwich.
2. Set Up the Relationship:
- Let [tex]\( l \)[/tex] represent the length of the bread loaf after [tex]\( d \)[/tex] days.
- Initially, when [tex]\( d = 0 \)[/tex], the length [tex]\( l \)[/tex] is 65 centimeters.
- Each day, Diep reduces the length of the loaf by 15 centimeters.
3. Form the Equation:
- After [tex]\( d \)[/tex] days, the new length of the bread, [tex]\( l \)[/tex], is calculated by subtracting the total bread used from the initial length.
- Each day, Diep uses [tex]\( 15 \times d \)[/tex] centimeters of bread.
- Thus, the equation relating [tex]\( l \)[/tex] and [tex]\( d \)[/tex] becomes:
[tex]\[ l = 65 - 15d \][/tex]
4. Determine the Graph Type:
- Since Diep cuts the bread once each day, the length [tex]\( l \)[/tex] only changes at discrete time intervals (each day).
- Therefore, the graph of the equation should be discrete because [tex]\( l \)[/tex] does not change continuously but rather in discrete steps.
Based on this detailed derivation, the appropriate expression and characteristic of the graph are:
[tex]\[ l = 65 - 15d; \text{discrete} \][/tex]
Among the provided options, the correct one is:
[tex]\[ l = 65 - 15d; \text{discrete} \][/tex]
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.