Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
To tackle the problem, we need to use the concept of linear approximation to estimate [tex]\( \Delta y \)[/tex] when [tex]\( y = \sin(3x) \)[/tex] and [tex]\( \Delta x = 0.3 \)[/tex] at [tex]\( x = 0 \)[/tex].
Here are the detailed steps to solve this problem:
1. Expression for [tex]\( y \)[/tex] and its derivative:
[tex]\[ y = \sin(3x) \][/tex]
To use linear approximation, we need the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} [\sin(3x)] = 3 \cos(3x) \][/tex]
2. Initial values:
[tex]\[ x_{\text{initial}} = 0 \][/tex]
[tex]\[ \Delta x = 0.3 \][/tex]
3. Linear approximation formula:
The linear approximation formula around [tex]\( x = x_{\text{initial}} \)[/tex] is given by:
[tex]\[ \Delta y \approx \left. \frac{dy}{dx} \right|_{x=x_{\text{initial}}} \Delta x \][/tex]
4. Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ \left. \frac{dy}{dx} \right|_{x=0} = 3 \cos(3 \cdot 0) = 3 \cos(0) = 3 \cdot 1 = 3 \][/tex]
5. Estimate [tex]\( \Delta y \)[/tex] using the linear approximation:
[tex]\[ \Delta y \approx 3 \cdot \Delta x = 3 \cdot 0.3 = 0.9 \][/tex]
Therefore, the linear approximation estimate for [tex]\( \Delta y \)[/tex] is:
[tex]\[ \Delta y \approx 0.9 \][/tex]
6. Calculate the exact change in [tex]\( y \)[/tex]:
We need to find the exact value of [tex]\( \Delta y \)[/tex]:
[tex]\[ \Delta y_{\text{exact}} = y(x_{\text{initial}} + \Delta x) - y(x_{\text{initial}}) \][/tex]
Here, [tex]\( x_{\text{initial}} = 0 \)[/tex] and [tex]\( \Delta x = 0.3 \)[/tex], so:
[tex]\[ y(0.3) = \sin(3 \cdot 0.3) = \sin(0.9) \][/tex]
[tex]\[ y(0) = \sin(3 \cdot 0) = \sin(0) = 0 \][/tex]
Hence,
[tex]\[ \Delta y_{\text{exact}} = \sin(0.9) - \sin(0) = \sin(0.9) \][/tex]
7. Plugging in the value:
Using the computed numerical result (which we treat as an exact calculation):
[tex]\[ \Delta y_{\text{exact}} \approx 0.776772\][/tex]
8. Calculate the percentage error:
The percentage error is calculated as:
[tex]\[ \text{Percentage error} = \left| \frac{\Delta y_{\text{exact}} - \Delta y_{\text{approx}}}{\Delta y_{\text{exact}}} \right| \times 100 \][/tex]
Substituting the values:
[tex]\[ \text{Percentage error} = \left| \frac{0.776772 - 0.9}{0.776772} \right| \times 100 \approx 14.89\% \][/tex]
Thus, the final results are:
[tex]\[ \Delta y \approx 0.9 \][/tex]
[tex]\[ \text{Percentage error} \approx 14.89\% \][/tex]
Here are the detailed steps to solve this problem:
1. Expression for [tex]\( y \)[/tex] and its derivative:
[tex]\[ y = \sin(3x) \][/tex]
To use linear approximation, we need the derivative of [tex]\( y \)[/tex] with respect to [tex]\( x \)[/tex]:
[tex]\[ \frac{dy}{dx} = \frac{d}{dx} [\sin(3x)] = 3 \cos(3x) \][/tex]
2. Initial values:
[tex]\[ x_{\text{initial}} = 0 \][/tex]
[tex]\[ \Delta x = 0.3 \][/tex]
3. Linear approximation formula:
The linear approximation formula around [tex]\( x = x_{\text{initial}} \)[/tex] is given by:
[tex]\[ \Delta y \approx \left. \frac{dy}{dx} \right|_{x=x_{\text{initial}}} \Delta x \][/tex]
4. Evaluate the derivative at [tex]\( x = 0 \)[/tex]:
[tex]\[ \left. \frac{dy}{dx} \right|_{x=0} = 3 \cos(3 \cdot 0) = 3 \cos(0) = 3 \cdot 1 = 3 \][/tex]
5. Estimate [tex]\( \Delta y \)[/tex] using the linear approximation:
[tex]\[ \Delta y \approx 3 \cdot \Delta x = 3 \cdot 0.3 = 0.9 \][/tex]
Therefore, the linear approximation estimate for [tex]\( \Delta y \)[/tex] is:
[tex]\[ \Delta y \approx 0.9 \][/tex]
6. Calculate the exact change in [tex]\( y \)[/tex]:
We need to find the exact value of [tex]\( \Delta y \)[/tex]:
[tex]\[ \Delta y_{\text{exact}} = y(x_{\text{initial}} + \Delta x) - y(x_{\text{initial}}) \][/tex]
Here, [tex]\( x_{\text{initial}} = 0 \)[/tex] and [tex]\( \Delta x = 0.3 \)[/tex], so:
[tex]\[ y(0.3) = \sin(3 \cdot 0.3) = \sin(0.9) \][/tex]
[tex]\[ y(0) = \sin(3 \cdot 0) = \sin(0) = 0 \][/tex]
Hence,
[tex]\[ \Delta y_{\text{exact}} = \sin(0.9) - \sin(0) = \sin(0.9) \][/tex]
7. Plugging in the value:
Using the computed numerical result (which we treat as an exact calculation):
[tex]\[ \Delta y_{\text{exact}} \approx 0.776772\][/tex]
8. Calculate the percentage error:
The percentage error is calculated as:
[tex]\[ \text{Percentage error} = \left| \frac{\Delta y_{\text{exact}} - \Delta y_{\text{approx}}}{\Delta y_{\text{exact}}} \right| \times 100 \][/tex]
Substituting the values:
[tex]\[ \text{Percentage error} = \left| \frac{0.776772 - 0.9}{0.776772} \right| \times 100 \approx 14.89\% \][/tex]
Thus, the final results are:
[tex]\[ \Delta y \approx 0.9 \][/tex]
[tex]\[ \text{Percentage error} \approx 14.89\% \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.