Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Get quick and reliable solutions to your questions from a community of seasoned experts on our user-friendly platform. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine the final chemical equation, we will consider the given intermediate reactions and simplify the overall reaction.
1. The first reaction provided is:
[tex]\[ \text{C (s) + } \frac{1}{2} \text{O}_2 \text{(g) } \rightarrow \text{CO (g)} \][/tex]
2. The second reaction provided is:
[tex]\[ \text{CO (g) + } \frac{1}{2} \text{O}_2 \text{(g) } \rightarrow \text{CO}_2\text{(g)} \][/tex]
To find the overall reaction, we will sum the two reactions. Summing them gives us:
[tex]\[ \text{C (s) + } \frac{1}{2} \text{O}_2 \text{(g) } + \text{CO (g) + } \frac{1}{2} \text{O}_2 \text{(g)} \rightarrow \text{CO (g) + CO}_2\text{(g)} \][/tex]
Next, we notice that CO appears as both a reactant and a product in the overall reaction. Therefore, we can cancel out CO from both sides of the equation. This leaves us with the simplified final reaction:
[tex]\[ \text{C (s) + O}_2 \text{(g)} \rightarrow \text{CO}_2\text{(g)} \][/tex]
Thus, in forming the final chemical equation, we should cancel out CO because it appears as a reactant in one intermediate reaction and a product in the other intermediate reaction.
1. The first reaction provided is:
[tex]\[ \text{C (s) + } \frac{1}{2} \text{O}_2 \text{(g) } \rightarrow \text{CO (g)} \][/tex]
2. The second reaction provided is:
[tex]\[ \text{CO (g) + } \frac{1}{2} \text{O}_2 \text{(g) } \rightarrow \text{CO}_2\text{(g)} \][/tex]
To find the overall reaction, we will sum the two reactions. Summing them gives us:
[tex]\[ \text{C (s) + } \frac{1}{2} \text{O}_2 \text{(g) } + \text{CO (g) + } \frac{1}{2} \text{O}_2 \text{(g)} \rightarrow \text{CO (g) + CO}_2\text{(g)} \][/tex]
Next, we notice that CO appears as both a reactant and a product in the overall reaction. Therefore, we can cancel out CO from both sides of the equation. This leaves us with the simplified final reaction:
[tex]\[ \text{C (s) + O}_2 \text{(g)} \rightarrow \text{CO}_2\text{(g)} \][/tex]
Thus, in forming the final chemical equation, we should cancel out CO because it appears as a reactant in one intermediate reaction and a product in the other intermediate reaction.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.