Welcome to Westonci.ca, your one-stop destination for finding answers to all your questions. Join our expert community now! Ask your questions and receive precise answers from experienced professionals across different disciplines. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.
Sagot :
Certainly! Let's solve this problem step-by-step.
1. Understanding Supplementary Angles:
Supplementary angles are two angles whose measures add up to 180 degrees.
2. Define the Angles:
- Let the measure of angle Y be denoted by [tex]\( y \)[/tex].
- According to the problem, angle X is 3 times the measure of angle Y. So, we can write the measure of angle X as [tex]\( 3y \)[/tex].
3. Set Up the Equation:
Since angles X and Y are supplementary, their sum is 180 degrees. We can write the equation:
[tex]\[ X + Y = 180^\circ \][/tex]
Substituting [tex]\( X = 3y \)[/tex], the equation becomes:
[tex]\[ 3y + y = 180^\circ \][/tex]
4. Solve for [tex]\( y \)[/tex]:
Combine the terms on the left side of the equation:
[tex]\[ 4y = 180^\circ \][/tex]
Divide both sides by 4 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{180}{4} = 45^\circ \][/tex]
5. Find the Measure of Angle X:
Now that we have the measure of angle Y, we can find the measure of angle X:
[tex]\[ X = 3y = 3 \times 45^\circ = 135^\circ \][/tex]
Therefore, the measure of angle X is [tex]\( 135^\circ \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]
1. Understanding Supplementary Angles:
Supplementary angles are two angles whose measures add up to 180 degrees.
2. Define the Angles:
- Let the measure of angle Y be denoted by [tex]\( y \)[/tex].
- According to the problem, angle X is 3 times the measure of angle Y. So, we can write the measure of angle X as [tex]\( 3y \)[/tex].
3. Set Up the Equation:
Since angles X and Y are supplementary, their sum is 180 degrees. We can write the equation:
[tex]\[ X + Y = 180^\circ \][/tex]
Substituting [tex]\( X = 3y \)[/tex], the equation becomes:
[tex]\[ 3y + y = 180^\circ \][/tex]
4. Solve for [tex]\( y \)[/tex]:
Combine the terms on the left side of the equation:
[tex]\[ 4y = 180^\circ \][/tex]
Divide both sides by 4 to solve for [tex]\( y \)[/tex]:
[tex]\[ y = \frac{180}{4} = 45^\circ \][/tex]
5. Find the Measure of Angle X:
Now that we have the measure of angle Y, we can find the measure of angle X:
[tex]\[ X = 3y = 3 \times 45^\circ = 135^\circ \][/tex]
Therefore, the measure of angle X is [tex]\( 135^\circ \)[/tex].
So, the correct answer is:
[tex]\[ \boxed{135^\circ} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.