Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Explore our Q&A platform to find reliable answers from a wide range of experts in different fields. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the apportionment of fourteen legislative seats among the three states using the Huntington-Hill method, we follow these steps:
1. Initial Allocation:
- Allocate to each state the integer part of their standard quota.
- State 1: The standard quota is 2.67. The integer part is 2.
- State 2: The standard quota is 6.92. The integer part is 6.
- State 3: The standard quota is 4.17. The integer part is 4.
2. Calculate Initial Seats:
- State 1: 2 seats
- State 2: 6 seats
- State 3: 4 seats
- Total allocated seats initially: [tex]\(2 + 6 + 4 = 12\)[/tex]
3. Remaining Seats to Allocate:
- Total seats to allocate: 14
- Seats already allocated: 12
- Remaining seats: [tex]\(14 - 12 = 2\)[/tex]
4. Ratios for Huntington-Hill Method:
- Compute the ratios as follows:
- For each state, the ratio is [tex]\(\frac{\text{standard quota}}{\sqrt{\text{seats} \times (\text{seats} + 1)}}\)[/tex].
- State 1: [tex]\(\frac{2.67}{\sqrt{2 \times 3}} = \frac{2.67}{\sqrt{6}}\)[/tex]
- State 2: [tex]\(\frac{6.92}{\sqrt{6 \times 7}} = \frac{6.92}{\sqrt{42}}\)[/tex]
- State 3: [tex]\(\frac{4.17}{\sqrt{4 \times 5}} = \frac{4.17}{\sqrt{20}}\)[/tex]
5. Allocate Remaining Seats:
- We need to allocate the 2 remaining seats to the states with the highest ratios.
- Check the ratios calculated to decide which state gets the next seat.
- Allocate one seat at a time and update the ratios accordingly.
Following this step-by-step procedure, the final allocation of seats results in:
- State 1 ends up with 3 seats.
- State 2 ends up with 7 seats.
- State 3 ends up with 4 seats.
Thus, the apportionment is [tex]\((3, 7, 4)\)[/tex].
This matches option (C) in the provided options:
(C) [tex]\(3, 7, 4) So, the correct answer is: (C) \(3, 7, 4\)[/tex]
1. Initial Allocation:
- Allocate to each state the integer part of their standard quota.
- State 1: The standard quota is 2.67. The integer part is 2.
- State 2: The standard quota is 6.92. The integer part is 6.
- State 3: The standard quota is 4.17. The integer part is 4.
2. Calculate Initial Seats:
- State 1: 2 seats
- State 2: 6 seats
- State 3: 4 seats
- Total allocated seats initially: [tex]\(2 + 6 + 4 = 12\)[/tex]
3. Remaining Seats to Allocate:
- Total seats to allocate: 14
- Seats already allocated: 12
- Remaining seats: [tex]\(14 - 12 = 2\)[/tex]
4. Ratios for Huntington-Hill Method:
- Compute the ratios as follows:
- For each state, the ratio is [tex]\(\frac{\text{standard quota}}{\sqrt{\text{seats} \times (\text{seats} + 1)}}\)[/tex].
- State 1: [tex]\(\frac{2.67}{\sqrt{2 \times 3}} = \frac{2.67}{\sqrt{6}}\)[/tex]
- State 2: [tex]\(\frac{6.92}{\sqrt{6 \times 7}} = \frac{6.92}{\sqrt{42}}\)[/tex]
- State 3: [tex]\(\frac{4.17}{\sqrt{4 \times 5}} = \frac{4.17}{\sqrt{20}}\)[/tex]
5. Allocate Remaining Seats:
- We need to allocate the 2 remaining seats to the states with the highest ratios.
- Check the ratios calculated to decide which state gets the next seat.
- Allocate one seat at a time and update the ratios accordingly.
Following this step-by-step procedure, the final allocation of seats results in:
- State 1 ends up with 3 seats.
- State 2 ends up with 7 seats.
- State 3 ends up with 4 seats.
Thus, the apportionment is [tex]\((3, 7, 4)\)[/tex].
This matches option (C) in the provided options:
(C) [tex]\(3, 7, 4) So, the correct answer is: (C) \(3, 7, 4\)[/tex]
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.