Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our Q&A platform provides quick and trustworthy answers to your questions from experienced professionals in different areas of expertise. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Let's solve the given equations step-by-step.
### 1. The equation [tex]\(8 - 4x = 0\)[/tex]
First, let's isolate [tex]\(x\)[/tex]:
[tex]\[ 8 - 4x = 0 \][/tex]
Subtract 8 from both sides:
[tex]\[ -4x = -8 \][/tex]
Now, divide both sides by -4:
[tex]\[ x = \frac{-8}{-4} \][/tex]
[tex]\[ x = 2 \][/tex]
So, the equation [tex]\(8 - 4x = 0\)[/tex] has one real solution, which is [tex]\(x = 2\)[/tex].
### 2. The equation [tex]\(2 - 9 = 0\)[/tex]
We can simplify the left-hand side:
[tex]\[ 2 - 9 = -7 \][/tex]
This simplifies to:
[tex]\[ -7 = 0 \][/tex]
This equation is clearly false because [tex]\(-7\)[/tex] is never equal to [tex]\(0\)[/tex]. Therefore, there are no real solutions for the equation [tex]\(2 - 9 = 0\)[/tex].
### 3. The equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex]
To solve this cubic equation, we will explore its roots.
A cubic equation [tex]\(ax^3 + bx^2 + cx + d = 0\)[/tex] may have up to three roots, which can be real or complex (imaginary).
For the equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex]:
- There is one real solution to this equation.
- There are two imaginary solutions.
Thus, the equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex] has one real solution and two imaginary solutions.
### Summary:
1. The equation [tex]\(8 - 4x = 0\)[/tex] has one real solution, which is [tex]\(x = 2\)[/tex].
2. The equation [tex]\(2 - 9 = 0\)[/tex] has no real solutions.
3. The equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex] has one real solution and two imaginary solutions.
### 1. The equation [tex]\(8 - 4x = 0\)[/tex]
First, let's isolate [tex]\(x\)[/tex]:
[tex]\[ 8 - 4x = 0 \][/tex]
Subtract 8 from both sides:
[tex]\[ -4x = -8 \][/tex]
Now, divide both sides by -4:
[tex]\[ x = \frac{-8}{-4} \][/tex]
[tex]\[ x = 2 \][/tex]
So, the equation [tex]\(8 - 4x = 0\)[/tex] has one real solution, which is [tex]\(x = 2\)[/tex].
### 2. The equation [tex]\(2 - 9 = 0\)[/tex]
We can simplify the left-hand side:
[tex]\[ 2 - 9 = -7 \][/tex]
This simplifies to:
[tex]\[ -7 = 0 \][/tex]
This equation is clearly false because [tex]\(-7\)[/tex] is never equal to [tex]\(0\)[/tex]. Therefore, there are no real solutions for the equation [tex]\(2 - 9 = 0\)[/tex].
### 3. The equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex]
To solve this cubic equation, we will explore its roots.
A cubic equation [tex]\(ax^3 + bx^2 + cx + d = 0\)[/tex] may have up to three roots, which can be real or complex (imaginary).
For the equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex]:
- There is one real solution to this equation.
- There are two imaginary solutions.
Thus, the equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex] has one real solution and two imaginary solutions.
### Summary:
1. The equation [tex]\(8 - 4x = 0\)[/tex] has one real solution, which is [tex]\(x = 2\)[/tex].
2. The equation [tex]\(2 - 9 = 0\)[/tex] has no real solutions.
3. The equation [tex]\(x^3 + 3x^2 + 5x + 15 = 0\)[/tex] has one real solution and two imaginary solutions.
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We're here to help at Westonci.ca. Keep visiting for the best answers to your questions.