Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform.

A coin is tossed 4 times. Which of the following represents the probability of the coin landing on heads all 4 times?

A. [tex]\(\frac{1}{128}\)[/tex]
B. [tex]\(\frac{1}{16}\)[/tex]
C. [tex]\(\frac{1}{64}\)[/tex]
D. [tex]\(\frac{1}{4}\)[/tex]


Sagot :

To solve this problem, we need to determine the probability of a coin landing on heads for four consecutive tosses.

1. First, recognize that the probability of a coin landing on heads in a single toss is [tex]\( \frac{1}{2} \)[/tex].

2. Since the coin tosses are independent events, the probability of getting heads in four consecutive tosses is the product of the individual probabilities of getting heads in each toss.

3. Thus, the probability of landing on heads all 4 times is calculated by multiplying [tex]\( \frac{1}{2} \)[/tex] for each of the four tosses:
[tex]\[ \left( \frac{1}{2} \right)^4 \][/tex]

4. Calculate the result of raising [tex]\( \frac{1}{2} \)[/tex] to the 4th power:
[tex]\[ \left( \frac{1}{2} \right)^4 = \frac{1}{2 \times 2 \times 2 \times 2} = \frac{1}{16} \][/tex]

5. Therefore, the probability of the coin landing on heads in all four tosses is:
[tex]\[ \frac{1}{16} \][/tex]

So, the correct answer is:
B. [tex]\( \frac{1}{16} \)[/tex]