Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Join our Q&A platform and get accurate answers to all your questions from professionals across multiple disciplines. Join our Q&A platform to connect with experts dedicated to providing accurate answers to your questions in various fields.
Sagot :
To determine which function has a domain of all real numbers, let's analyze each of the given functions:
A. [tex]\( y = \cot x \)[/tex] (cotangent):
- The cotangent function is defined as [tex]\( \cot x = \frac{\cos x}{\sin x} \)[/tex].
- This function is undefined when [tex]\( \sin x = 0 \)[/tex], which occurs at [tex]\( x = k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \cot x \)[/tex] is not defined for all real numbers because it has discontinuities at these points.
B. [tex]\( y = \sec x \)[/tex] (secant):
- The secant function is defined as [tex]\( \sec x = \frac{1}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Therefore, [tex]\( \sec x \)[/tex] is not defined for all real numbers due to these points.
C. [tex]\( y = \tan x \)[/tex] (tangent):
- The tangent function is defined as [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \tan x \)[/tex] also has discontinuities and is not defined for all real numbers.
D. [tex]\( y = \sin x \)[/tex] (sine):
- The sine function is defined for all values of [tex]\( x \)[/tex] without any discontinuities.
- There are no points where [tex]\( \sin x \)[/tex] is undefined.
Given these points, the function that has a domain of all real numbers is [tex]\( y = \sin x \)[/tex].
Answer: D. [tex]\( y = \sin x \)[/tex]
A. [tex]\( y = \cot x \)[/tex] (cotangent):
- The cotangent function is defined as [tex]\( \cot x = \frac{\cos x}{\sin x} \)[/tex].
- This function is undefined when [tex]\( \sin x = 0 \)[/tex], which occurs at [tex]\( x = k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \cot x \)[/tex] is not defined for all real numbers because it has discontinuities at these points.
B. [tex]\( y = \sec x \)[/tex] (secant):
- The secant function is defined as [tex]\( \sec x = \frac{1}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Therefore, [tex]\( \sec x \)[/tex] is not defined for all real numbers due to these points.
C. [tex]\( y = \tan x \)[/tex] (tangent):
- The tangent function is defined as [tex]\( \tan x = \frac{\sin x}{\cos x} \)[/tex].
- This function is undefined when [tex]\( \cos x = 0 \)[/tex], which occurs at [tex]\( x = \frac{\pi}{2} + k\pi \)[/tex] where [tex]\( k \)[/tex] is an integer.
- Thus, [tex]\( \tan x \)[/tex] also has discontinuities and is not defined for all real numbers.
D. [tex]\( y = \sin x \)[/tex] (sine):
- The sine function is defined for all values of [tex]\( x \)[/tex] without any discontinuities.
- There are no points where [tex]\( \sin x \)[/tex] is undefined.
Given these points, the function that has a domain of all real numbers is [tex]\( y = \sin x \)[/tex].
Answer: D. [tex]\( y = \sin x \)[/tex]
Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.