Welcome to Westonci.ca, where your questions are met with accurate answers from a community of experts and enthusiasts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which point would map onto itself after a reflection across the line [tex]\( y = x \)[/tex], we need to understand how reflection works. A point [tex]\((a, b)\)[/tex] reflected across the line [tex]\( y = x \)[/tex] moves to the point [tex]\((b, a)\)[/tex].
So, for a point to map onto itself after reflection across the line [tex]\( y = x \)[/tex], the original point [tex]\((a, b)\)[/tex] must satisfy the condition:
[tex]\[ (a, b) = (b, a) \][/tex]
This implies that [tex]\( a \)[/tex] must be equal to [tex]\( b \)[/tex].
Now, let's analyze each given point:
1. [tex]\((-4, -4)\)[/tex]:
- Reflected point: [tex]\((-4, -4) \rightarrow (-4, -4)\)[/tex]
- Since [tex]\( -4 = -4 \)[/tex], this point maps onto itself.
2. [tex]\((-4, 0)\)[/tex]:
- Reflected point: [tex]\((-4, 0) \rightarrow (0, -4)\)[/tex]
- Since [tex]\( -4 \neq 0 \)[/tex], this point does not map onto itself.
3. [tex]\( (0, -4)\)[/tex]:
- Reflected point: [tex]\((0, -4) \rightarrow (-4, 0)\)[/tex]
- Since [tex]\( 0 \neq -4 \)[/tex], this point does not map onto itself.
4. [tex]\( (4, -4)\)[/tex]:
- Reflected point: [tex]\( (4, -4) \rightarrow (-4, 4)\)[/tex]
- Since [tex]\( 4 \neq -4 \)[/tex], this point does not map onto itself.
From the analysis, we can see that the only point that maps onto itself after the reflection across the line [tex]\( y = x \)[/tex] is [tex]\((-4, -4)\)[/tex].
Therefore, the point that would map onto itself after a reflection across the line [tex]\( y = x \)[/tex] is:
[tex]\[ \boxed{(-4, -4)} \][/tex]
So, for a point to map onto itself after reflection across the line [tex]\( y = x \)[/tex], the original point [tex]\((a, b)\)[/tex] must satisfy the condition:
[tex]\[ (a, b) = (b, a) \][/tex]
This implies that [tex]\( a \)[/tex] must be equal to [tex]\( b \)[/tex].
Now, let's analyze each given point:
1. [tex]\((-4, -4)\)[/tex]:
- Reflected point: [tex]\((-4, -4) \rightarrow (-4, -4)\)[/tex]
- Since [tex]\( -4 = -4 \)[/tex], this point maps onto itself.
2. [tex]\((-4, 0)\)[/tex]:
- Reflected point: [tex]\((-4, 0) \rightarrow (0, -4)\)[/tex]
- Since [tex]\( -4 \neq 0 \)[/tex], this point does not map onto itself.
3. [tex]\( (0, -4)\)[/tex]:
- Reflected point: [tex]\((0, -4) \rightarrow (-4, 0)\)[/tex]
- Since [tex]\( 0 \neq -4 \)[/tex], this point does not map onto itself.
4. [tex]\( (4, -4)\)[/tex]:
- Reflected point: [tex]\( (4, -4) \rightarrow (-4, 4)\)[/tex]
- Since [tex]\( 4 \neq -4 \)[/tex], this point does not map onto itself.
From the analysis, we can see that the only point that maps onto itself after the reflection across the line [tex]\( y = x \)[/tex] is [tex]\((-4, -4)\)[/tex].
Therefore, the point that would map onto itself after a reflection across the line [tex]\( y = x \)[/tex] is:
[tex]\[ \boxed{(-4, -4)} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.