Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Get the answers you need quickly and accurately from a dedicated community of experts on our Q&A platform. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform.
Sagot :
To determine the length and width of the TV given that the diagonal is 28 inches and it forms a pair of [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] right triangles, we need to understand the properties and side length ratios of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle.
Properties of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] Triangle:
In a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle:
- The side opposite the [tex]\(30^\circ\)[/tex] angle (shorter leg) is [tex]\(x\)[/tex].
- The side opposite the [tex]\(60^\circ\)[/tex] angle (longer leg) is [tex]\(x\sqrt{3}\)[/tex].
- The side opposite the [tex]\(90^\circ\)[/tex] angle (hypotenuse) is [tex]\(2x\)[/tex].
Given the diagonal of the TV is 28 inches, it acts as the hypotenuse of the combined [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangles.
Step-by-Step Solution:
1. Since the hypotenuse (diagonal) of each of these [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangles is the same, we can isolate one triangle for simplicity. The diagonal forms the hypotenuse of the single mentioned right triangle.
2. Set the hypotenuse [tex]\(2x\)[/tex] equal to 28 inches:
[tex]\[ 2x = 28 \][/tex]
3. Solve for [tex]\(x\)[/tex] (the shorter leg of the triangle):
[tex]\[ x = \frac{28}{2} = 14 \text{ inches} \][/tex]
4. Determine the longer leg (side opposite the [tex]\(60^\circ\)[/tex] angle), which is [tex]\(x\sqrt{3}\)[/tex]:
[tex]\[ \text{Longer leg} = 14\sqrt{3} \text{ inches} \][/tex]
Thus, the exact dimensions of the TV are:
- Width (shorter leg) = 14 inches
- Length (longer leg) = [tex]\(14 \sqrt{3}\)[/tex] inches
Answer:
C. 14 inches by [tex]\(14 \sqrt{3}\)[/tex] inches
Properties of a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] Triangle:
In a [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangle:
- The side opposite the [tex]\(30^\circ\)[/tex] angle (shorter leg) is [tex]\(x\)[/tex].
- The side opposite the [tex]\(60^\circ\)[/tex] angle (longer leg) is [tex]\(x\sqrt{3}\)[/tex].
- The side opposite the [tex]\(90^\circ\)[/tex] angle (hypotenuse) is [tex]\(2x\)[/tex].
Given the diagonal of the TV is 28 inches, it acts as the hypotenuse of the combined [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangles.
Step-by-Step Solution:
1. Since the hypotenuse (diagonal) of each of these [tex]\(30^\circ-60^\circ-90^\circ\)[/tex] triangles is the same, we can isolate one triangle for simplicity. The diagonal forms the hypotenuse of the single mentioned right triangle.
2. Set the hypotenuse [tex]\(2x\)[/tex] equal to 28 inches:
[tex]\[ 2x = 28 \][/tex]
3. Solve for [tex]\(x\)[/tex] (the shorter leg of the triangle):
[tex]\[ x = \frac{28}{2} = 14 \text{ inches} \][/tex]
4. Determine the longer leg (side opposite the [tex]\(60^\circ\)[/tex] angle), which is [tex]\(x\sqrt{3}\)[/tex]:
[tex]\[ \text{Longer leg} = 14\sqrt{3} \text{ inches} \][/tex]
Thus, the exact dimensions of the TV are:
- Width (shorter leg) = 14 inches
- Length (longer leg) = [tex]\(14 \sqrt{3}\)[/tex] inches
Answer:
C. 14 inches by [tex]\(14 \sqrt{3}\)[/tex] inches
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.