Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To determine the average atomic mass of element [tex]\( X \)[/tex], we need to use the information provided about its isotopes' atomic masses and their respective abundances. We will follow the steps below:
1. Identify the atomic masses and their respective abundances from the table:
- Isotope [tex]\( X \)[/tex]-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%.
- Isotope [tex]\( X \)[/tex]-65 has an atomic mass of 64.9278 amu and an abundance of 30.85%.
2. Convert the percentages of abundance into decimal form by dividing by 100:
- [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]
3. Calculate the contribution of each isotope to the average atomic mass:
- Contribution of [tex]\( X \)[/tex]-63: [tex]\( 62.9296 \times 0.6915 \)[/tex]
- Contribution of [tex]\( X \)[/tex]-65: [tex]\( 64.9278 \times 0.3085 \)[/tex]
4. Add these contributions together to get the total average atomic mass:
[tex]\[ \text{Average atomic mass} = (62.9296 \times 0.6915) + (64.9278 \times 0.3085) \][/tex]
5. Perform the calculations for the contributions:
[tex]\[ 62.9296 \times 0.6915 \approx 43.5102 \][/tex]
[tex]\[ 64.9278 \times 0.3085 \approx 20.0398 \][/tex]
6. Sum these contributions to find the total average atomic mass:
[tex]\[ 43.5102 + 20.0398 = 63.55 \][/tex]
7. Finally, round the result to the nearest hundredth:
[tex]\[ 63.55 \, \text{amu} \][/tex]
Thus, the average atomic mass of element [tex]\( X \)[/tex] is 63.55 amu.
1. Identify the atomic masses and their respective abundances from the table:
- Isotope [tex]\( X \)[/tex]-63 has an atomic mass of 62.9296 amu and an abundance of 69.15%.
- Isotope [tex]\( X \)[/tex]-65 has an atomic mass of 64.9278 amu and an abundance of 30.85%.
2. Convert the percentages of abundance into decimal form by dividing by 100:
- [tex]\( 69.15\% = \frac{69.15}{100} = 0.6915 \)[/tex]
- [tex]\( 30.85\% = \frac{30.85}{100} = 0.3085 \)[/tex]
3. Calculate the contribution of each isotope to the average atomic mass:
- Contribution of [tex]\( X \)[/tex]-63: [tex]\( 62.9296 \times 0.6915 \)[/tex]
- Contribution of [tex]\( X \)[/tex]-65: [tex]\( 64.9278 \times 0.3085 \)[/tex]
4. Add these contributions together to get the total average atomic mass:
[tex]\[ \text{Average atomic mass} = (62.9296 \times 0.6915) + (64.9278 \times 0.3085) \][/tex]
5. Perform the calculations for the contributions:
[tex]\[ 62.9296 \times 0.6915 \approx 43.5102 \][/tex]
[tex]\[ 64.9278 \times 0.3085 \approx 20.0398 \][/tex]
6. Sum these contributions to find the total average atomic mass:
[tex]\[ 43.5102 + 20.0398 = 63.55 \][/tex]
7. Finally, round the result to the nearest hundredth:
[tex]\[ 63.55 \, \text{amu} \][/tex]
Thus, the average atomic mass of element [tex]\( X \)[/tex] is 63.55 amu.
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.