Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.

The first-order rate constant for the decomposition of [tex]\( N_2O_5 \)[/tex] to [tex]\( N_2O_4 \)[/tex] and [tex]\( O_2 \)[/tex] at [tex]\( 70^{\circ} C \)[/tex] is [tex]\( 6.82 \times 10^{-3} \, s^{-1} \)[/tex].

Suppose we start with [tex]\( 0.300 \, mol \)[/tex] of [tex]\( N_2O_5(g) \)[/tex] in a [tex]\( 0.500 \, L \)[/tex] container.

How many moles of [tex]\( N_2O_5 \)[/tex] will remain after [tex]\( 1.5 \, min \)[/tex]?


Sagot :

Let's solve the given problem step-by-step for the decomposition of [tex]\( \text{N}_2\text{O}_5 \)[/tex] using the information provided:

### Step 1: Write down the given values
- Rate constant, [tex]\( k = 6.82 \times 10^{-3} \, \text{s}^{-1} \)[/tex]
- Initial amount of [tex]\( \text{N}_2\text{O}_5 \)[/tex], [tex]\( \text{initial\_mol} = 0.300 \, \text{mol} \)[/tex]
- Volume of the container, [tex]\( V = 0.500 \, \text{L} \)[/tex]
- Time, [tex]\( t = 1.5 \, \text{min} \)[/tex]

### Step 2: Convert the time from minutes to seconds
Since the rate constant [tex]\( k \)[/tex] is in units of [tex]\(\text{s}^{-1}\)[/tex], we need to convert the time to seconds:
[tex]\[ \text{time\_s} = t \times 60 \, \text{s/min} = 1.5 \, \text{min} \times 60 = 90 \, \text{s} \][/tex]

### Step 3: Calculate initial concentration
The initial concentration ([tex]\([A_0]\)[/tex]) of [tex]\( \text{N}_2\text{O}_5 \)[/tex] can be calculated using the formula:
[tex]\[ \text{concentration\_initial} = \frac{\text{initial\_mol}}{V} = \frac{0.300 \, \text{mol}}{0.500 \, \text{L}} = 0.600 \, \text{mol/L} \][/tex]

### Step 4: Use the first-order reaction formula
The formula for a first-order reaction is:
[tex]\[ [A] = [A_0] \cdot e^{-kt} \][/tex]
where:
- [tex]\([A_0]\)[/tex] is the initial concentration,
- [tex]\( k \)[/tex] is the rate constant, and
- [tex]\( t \)[/tex] is the time.

Plugging in the values we have:
[tex]\[ [A] = 0.600 \, \text{mol/L} \cdot e^{- (6.82 \times 10^{-3} \, \text{s}^{-1} \times 90 \, \text{s})} \][/tex]

### Step 5: Calculate the remaining concentration
[tex]\[ [A] \approx 0.600 \, \text{mol/L} \cdot e^{-0.6138} \][/tex]
Using a calculator or an exponentiation function:
[tex]\[ [A] \approx 0.3247740322805302 \, \text{mol/L} \][/tex]

### Step 6: Find the remaining moles
Now, we need to find how many moles of [tex]\( \text{N}_2\text{O}_5 \)[/tex] remain in the container after 1.5 minutes. This is given by:
[tex]\[ \text{remaining\_mol} = [A] \cdot V = 0.3247740322805302 \, \text{mol/L} \cdot 0.500 \, \text{L} = 0.1623870161402651 \, \text{mol} \][/tex]

### Answer
The number of moles of [tex]\( \text{N}_2\text{O}_5 \)[/tex] remaining after 1.5 minutes is approximately [tex]\( 0.1624 \, \text{mol} \)[/tex].
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.