Looking for answers? Westonci.ca is your go-to Q&A platform, offering quick, trustworthy responses from a community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve for [tex]\( T_{mn} \)[/tex], the [tex]\( mn \)[/tex]-th term of the given arithmetic progression (AP) where [tex]\( T_r \)[/tex] denotes the [tex]\( r \)[/tex]-th term, given that:
[tex]\[ T_m = \frac{1}{n} \][/tex]
[tex]\[ T_n = \frac{1}{m} \][/tex]
we start by understanding the general form of the [tex]\( r \)[/tex]-th term of an AP:
[tex]\[ T_r = a + (r - 1)d \][/tex]
where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.
Given [tex]\( T_m \)[/tex] and [tex]\( T_n \)[/tex], we write the following two equations using the general formula:
[tex]\[ T_m = a + (m - 1)d = \frac{1}{n} \][/tex]
[tex]\[ T_n = a + (n - 1)d = \frac{1}{m} \][/tex]
To find [tex]\( a \)[/tex] and [tex]\( d \)[/tex], we solve these two linear equations simultaneously.
Substitute [tex]\( T_m = \frac{1}{n} \)[/tex] and [tex]\( T_n = \frac{1}{m} \)[/tex] into the equations:
[tex]\[ a + (m - 1)d = \frac{1}{n} \][/tex]
[tex]\[ a + (n - 1)d = \frac{1}{m} \][/tex]
By eliminating [tex]\( a \)[/tex] from these equations, we subtract the second equation from the first:
[tex]\[ (a + (m - 1)d) - (a + (n - 1)d) = \frac{1}{n} - \frac{1}{m} \][/tex]
[tex]\[ (m - 1)d - (n - 1)d = \frac{1}{n} - \frac{1}{m} \][/tex]
Simplify the left side:
[tex]\[ (m - 1 - (n - 1))d = \frac{1}{n} - \frac{1}{m} \][/tex]
[tex]\[ (m - n)d = \frac{1}{n} - \frac{1}{m} \][/tex]
Notice the right side can be simplified using a common denominator:
[tex]\[ (m - n)d = \frac{m - n}{mn} \][/tex]
Thus, the [tex]\( m - n \)[/tex] terms cancel out:
[tex]\[ d = \frac{1}{mn} \][/tex]
Now substitute [tex]\( d \)[/tex] back into one of the original equations to find [tex]\( a \)[/tex]. Using the first equation:
[tex]\[ a + (m - 1)\frac{1}{mn} = \frac{1}{n} \][/tex]
[tex]\[ a + \frac{m - 1}{mn} = \frac{1}{n} \][/tex]
Clearing the fractions by multiplying through by [tex]\( mn \)[/tex]:
[tex]\[ a \cdot mn + (m - 1) = m \][/tex]
[tex]\[ a \cdot mn = m - (m - 1) \][/tex]
[tex]\[ a \cdot mn = 1 \][/tex]
[tex]\[ a = \frac{1}{mn} \][/tex]
With [tex]\( a \)[/tex] and [tex]\( d \)[/tex] determined, we can find [tex]\( T_{mn} \)[/tex]:
[tex]\[ T_{mn} = a + (mn - 1)d \][/tex]
Substitute [tex]\( a = \frac{1}{mn} \)[/tex] and [tex]\( d = \frac{1}{mn} \)[/tex]:
[tex]\[ T_{mn} = \frac{1}{mn} + (mn - 1)\frac{1}{mn} \][/tex]
Distribute and simplify:
[tex]\[ T_{mn} = \frac{1}{mn} + \frac{mn - 1}{mn} \][/tex]
Combine the fractions:
[tex]\[ T_{mn} = \frac{1 + (mn - 1)}{mn} \][/tex]
[tex]\[ T_{mn} = \frac{mn}{mn} \][/tex]
[tex]\[ T_{mn} = 1 \][/tex]
Thus, the term [tex]\( T_{mn} \)[/tex] is:
[tex]\[ T_{mn} = \frac{(mn - 1) + 1}{mn} = \frac{mn}{mn} = 1 \][/tex]
[tex]\[ T_m = \frac{1}{n} \][/tex]
[tex]\[ T_n = \frac{1}{m} \][/tex]
we start by understanding the general form of the [tex]\( r \)[/tex]-th term of an AP:
[tex]\[ T_r = a + (r - 1)d \][/tex]
where [tex]\( a \)[/tex] is the first term and [tex]\( d \)[/tex] is the common difference.
Given [tex]\( T_m \)[/tex] and [tex]\( T_n \)[/tex], we write the following two equations using the general formula:
[tex]\[ T_m = a + (m - 1)d = \frac{1}{n} \][/tex]
[tex]\[ T_n = a + (n - 1)d = \frac{1}{m} \][/tex]
To find [tex]\( a \)[/tex] and [tex]\( d \)[/tex], we solve these two linear equations simultaneously.
Substitute [tex]\( T_m = \frac{1}{n} \)[/tex] and [tex]\( T_n = \frac{1}{m} \)[/tex] into the equations:
[tex]\[ a + (m - 1)d = \frac{1}{n} \][/tex]
[tex]\[ a + (n - 1)d = \frac{1}{m} \][/tex]
By eliminating [tex]\( a \)[/tex] from these equations, we subtract the second equation from the first:
[tex]\[ (a + (m - 1)d) - (a + (n - 1)d) = \frac{1}{n} - \frac{1}{m} \][/tex]
[tex]\[ (m - 1)d - (n - 1)d = \frac{1}{n} - \frac{1}{m} \][/tex]
Simplify the left side:
[tex]\[ (m - 1 - (n - 1))d = \frac{1}{n} - \frac{1}{m} \][/tex]
[tex]\[ (m - n)d = \frac{1}{n} - \frac{1}{m} \][/tex]
Notice the right side can be simplified using a common denominator:
[tex]\[ (m - n)d = \frac{m - n}{mn} \][/tex]
Thus, the [tex]\( m - n \)[/tex] terms cancel out:
[tex]\[ d = \frac{1}{mn} \][/tex]
Now substitute [tex]\( d \)[/tex] back into one of the original equations to find [tex]\( a \)[/tex]. Using the first equation:
[tex]\[ a + (m - 1)\frac{1}{mn} = \frac{1}{n} \][/tex]
[tex]\[ a + \frac{m - 1}{mn} = \frac{1}{n} \][/tex]
Clearing the fractions by multiplying through by [tex]\( mn \)[/tex]:
[tex]\[ a \cdot mn + (m - 1) = m \][/tex]
[tex]\[ a \cdot mn = m - (m - 1) \][/tex]
[tex]\[ a \cdot mn = 1 \][/tex]
[tex]\[ a = \frac{1}{mn} \][/tex]
With [tex]\( a \)[/tex] and [tex]\( d \)[/tex] determined, we can find [tex]\( T_{mn} \)[/tex]:
[tex]\[ T_{mn} = a + (mn - 1)d \][/tex]
Substitute [tex]\( a = \frac{1}{mn} \)[/tex] and [tex]\( d = \frac{1}{mn} \)[/tex]:
[tex]\[ T_{mn} = \frac{1}{mn} + (mn - 1)\frac{1}{mn} \][/tex]
Distribute and simplify:
[tex]\[ T_{mn} = \frac{1}{mn} + \frac{mn - 1}{mn} \][/tex]
Combine the fractions:
[tex]\[ T_{mn} = \frac{1 + (mn - 1)}{mn} \][/tex]
[tex]\[ T_{mn} = \frac{mn}{mn} \][/tex]
[tex]\[ T_{mn} = 1 \][/tex]
Thus, the term [tex]\( T_{mn} \)[/tex] is:
[tex]\[ T_{mn} = \frac{(mn - 1) + 1}{mn} = \frac{mn}{mn} = 1 \][/tex]
Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.