Looking for reliable answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Discover in-depth answers to your questions from a wide network of experts on our user-friendly Q&A platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine characteristics about the continuous function that produced the given table of values, we need to analyze the changes in the [tex]$y$[/tex] values as [tex]$x$[/tex] increases. The table provides the following data points:
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0.125 & -3 \\ \hline 0.5 & -1 \\ \hline 2 & 1 \\ \hline 8 & 3 \\ \hline 64 & 6 \\ \hline \end{array} \][/tex]
To find if the function has any [tex]$x$[/tex]-intercepts (where the function crosses the [tex]$x$[/tex]-axis, i.e., [tex]$y = 0$[/tex]), we look at the given [tex]$y$[/tex] values:
- At [tex]$x = 0.125$[/tex], [tex]$y = -3$[/tex]
- At [tex]$x = 0.5$[/tex], [tex]$y = -1$[/tex]
- At [tex]$x = 2$[/tex], [tex]$y = 1$[/tex]
- At [tex]$x = 8$[/tex], [tex]$y = 3$[/tex]
- At [tex]$x = 64$[/tex], [tex]$y = 6$[/tex]
A continuous function has an [tex]$x$[/tex]-intercept if the sign of [tex]$y$[/tex] changes between any two consecutive [tex]$x$[/tex] values. Let’s examine the sign changes between consecutive [tex]$y$[/tex] values:
1. From [tex]$x = 0.125$[/tex] ([tex]$y = -3$[/tex]) to [tex]$x = 0.5$[/tex] ([tex]$y = -1$[/tex])
- The sign of [tex]$y$[/tex] is negative in both cases. No sign change here.
2. From [tex]$x = 0.5$[/tex] ([tex]$y = -1$[/tex]) to [tex]$x = 2$[/tex] ([tex]$y = 1$[/tex])
- The sign of [tex]$y$[/tex] changes from negative to positive. This indicates the function must cross the [tex]$x$[/tex]-axis somewhere between [tex]$x = 0.5$[/tex] and [tex]$x = 2$[/tex].
3. We could continue checking, but once a change in sign is detected, it is sufficient to conclude that there is at least one [tex]$x$[/tex]-intercept.
Therefore, since there is a change in the sign of [tex]$y$[/tex] values between [tex]$x = 0.5$[/tex] and [tex]$x = 2$[/tex], we can confidently state that the function has at least one [tex]$x$[/tex]-intercept.
Hence, the correct answer is:
C. the function has at least one [tex]$x$[/tex]-intercept
[tex]\[ \begin{array}{|c|c|} \hline x & y \\ \hline 0.125 & -3 \\ \hline 0.5 & -1 \\ \hline 2 & 1 \\ \hline 8 & 3 \\ \hline 64 & 6 \\ \hline \end{array} \][/tex]
To find if the function has any [tex]$x$[/tex]-intercepts (where the function crosses the [tex]$x$[/tex]-axis, i.e., [tex]$y = 0$[/tex]), we look at the given [tex]$y$[/tex] values:
- At [tex]$x = 0.125$[/tex], [tex]$y = -3$[/tex]
- At [tex]$x = 0.5$[/tex], [tex]$y = -1$[/tex]
- At [tex]$x = 2$[/tex], [tex]$y = 1$[/tex]
- At [tex]$x = 8$[/tex], [tex]$y = 3$[/tex]
- At [tex]$x = 64$[/tex], [tex]$y = 6$[/tex]
A continuous function has an [tex]$x$[/tex]-intercept if the sign of [tex]$y$[/tex] changes between any two consecutive [tex]$x$[/tex] values. Let’s examine the sign changes between consecutive [tex]$y$[/tex] values:
1. From [tex]$x = 0.125$[/tex] ([tex]$y = -3$[/tex]) to [tex]$x = 0.5$[/tex] ([tex]$y = -1$[/tex])
- The sign of [tex]$y$[/tex] is negative in both cases. No sign change here.
2. From [tex]$x = 0.5$[/tex] ([tex]$y = -1$[/tex]) to [tex]$x = 2$[/tex] ([tex]$y = 1$[/tex])
- The sign of [tex]$y$[/tex] changes from negative to positive. This indicates the function must cross the [tex]$x$[/tex]-axis somewhere between [tex]$x = 0.5$[/tex] and [tex]$x = 2$[/tex].
3. We could continue checking, but once a change in sign is detected, it is sufficient to conclude that there is at least one [tex]$x$[/tex]-intercept.
Therefore, since there is a change in the sign of [tex]$y$[/tex] values between [tex]$x = 0.5$[/tex] and [tex]$x = 2$[/tex], we can confidently state that the function has at least one [tex]$x$[/tex]-intercept.
Hence, the correct answer is:
C. the function has at least one [tex]$x$[/tex]-intercept
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your go-to source for reliable answers. Return soon for more expert insights.