Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get detailed and accurate answers to your questions from a community of experts on our comprehensive Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which of the given expressions are like radicals to [tex]\(\sqrt{11}\)[/tex], we need to compare the expressions' radical parts with [tex]\(\sqrt{11}\)[/tex], or [tex]\(11^{1/2}\)[/tex]. Like radicals have the same radicand (the number under the radical) and the same index (the root).
Given the expressions:
- [tex]\(6 \sqrt[3]{11}\)[/tex]
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(2 \sqrt[3]{11}\)[/tex]
- [tex]\(-5 \sqrt[4]{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
Let's break them down:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(6 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
2. [tex]\(x \sqrt{11}\)[/tex]:
- This is [tex]\(x \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
3. [tex]\(2 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(2 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]:
- This is [tex]\(-5 \times 11^{1/4}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(4\)[/tex].
5. [tex]\(-6 \sqrt{11}\)[/tex]:
- This is [tex]\(-6 \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
To be like radicals to [tex]\(\sqrt{11}\)[/tex] (which is [tex]\(11^{1/2}\)[/tex]), the expressions must have the same radicand [tex]\(11\)[/tex] and same index [tex]\(2\)[/tex].
Comparing all the given expressions, the ones that match [tex]\(\sqrt{11}\)[/tex] are:
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
So, the expressions like radicals to [tex]\(\sqrt{11}\)[/tex] are:
[tex]\[ x \sqrt{11} \][/tex]
[tex]\[ -6 \sqrt{11} \][/tex]
Given the expressions:
- [tex]\(6 \sqrt[3]{11}\)[/tex]
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(2 \sqrt[3]{11}\)[/tex]
- [tex]\(-5 \sqrt[4]{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
Let's break them down:
1. [tex]\(6 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(6 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
2. [tex]\(x \sqrt{11}\)[/tex]:
- This is [tex]\(x \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
3. [tex]\(2 \sqrt[3]{11}\)[/tex]:
- This is [tex]\(2 \times 11^{1/3}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(3\)[/tex].
4. [tex]\(-5 \sqrt[4]{11}\)[/tex]:
- This is [tex]\(-5 \times 11^{1/4}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(4\)[/tex].
5. [tex]\(-6 \sqrt{11}\)[/tex]:
- This is [tex]\(-6 \times 11^{1/2}\)[/tex].
- The radicand is [tex]\(11\)[/tex], and the index is [tex]\(2\)[/tex].
To be like radicals to [tex]\(\sqrt{11}\)[/tex] (which is [tex]\(11^{1/2}\)[/tex]), the expressions must have the same radicand [tex]\(11\)[/tex] and same index [tex]\(2\)[/tex].
Comparing all the given expressions, the ones that match [tex]\(\sqrt{11}\)[/tex] are:
- [tex]\(x \sqrt{11}\)[/tex]
- [tex]\(-6 \sqrt{11}\)[/tex]
So, the expressions like radicals to [tex]\(\sqrt{11}\)[/tex] are:
[tex]\[ x \sqrt{11} \][/tex]
[tex]\[ -6 \sqrt{11} \][/tex]
Thank you for visiting our platform. We hope you found the answers you were looking for. Come back anytime you need more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.