Discover answers to your questions with Westonci.ca, the leading Q&A platform that connects you with knowledgeable experts. Ask your questions and receive accurate answers from professionals with extensive experience in various fields on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To solve the problem of finding the dimensions of the rectangular garden, let's work through it step-by-step:
1. Understand the given information:
- Half the perimeter of the rectangle is 36 meters.
- The length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex].
2. Express the full perimeter:
- Since half the perimeter is 36 meters, the full perimeter [tex]\(P\)[/tex] is [tex]\( 36 \times 2 = 72 \)[/tex] meters.
3. Use the formula for the perimeter of a rectangle:
- The formula for the perimeter of a rectangle is [tex]\( P = 2(l + w) \)[/tex].
4. Set up the equation using the given information:
- We know that the length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex]. Thus, [tex]\( l = w + 4 \)[/tex].
- Substituting this into the perimeter formula, we get [tex]\( P = 2((w + 4) + w) \)[/tex].
5. Simplify the perimeter equation:
- Substitute the full perimeter value (72 meters): [tex]\( 72 = 2(w + 4 + w) \)[/tex].
- Combine like terms inside the parentheses: [tex]\( 72 = 2(2w + 4) \)[/tex].
6. Distribute and solve for [tex]\( w \)[/tex]:
- Distribute the 2: [tex]\( 72 = 4w + 8 \)[/tex].
- Subtract 8 from both sides: [tex]\( 72 - 8 = 4w \)[/tex].
- Simplify: [tex]\( 64 = 4w \)[/tex].
7. Solve for the width [tex]\( w \)[/tex]:
- Divide both sides by 4: [tex]\( w = \frac{64}{4} = 16 \)[/tex].
8. Find the length [tex]\( l \)[/tex]:
- Since [tex]\( l = w + 4 \)[/tex], substitute [tex]\( w = 16 \)[/tex]: [tex]\( l = 16 + 4 = 20 \)[/tex].
Conclusion:
- The width of the rectangular garden is [tex]\( 16 \)[/tex] meters.
- The length of the rectangular garden is [tex]\( 20 \)[/tex] meters.
1. Understand the given information:
- Half the perimeter of the rectangle is 36 meters.
- The length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex].
2. Express the full perimeter:
- Since half the perimeter is 36 meters, the full perimeter [tex]\(P\)[/tex] is [tex]\( 36 \times 2 = 72 \)[/tex] meters.
3. Use the formula for the perimeter of a rectangle:
- The formula for the perimeter of a rectangle is [tex]\( P = 2(l + w) \)[/tex].
4. Set up the equation using the given information:
- We know that the length [tex]\( l \)[/tex] is 4 meters more than the width [tex]\( w \)[/tex]. Thus, [tex]\( l = w + 4 \)[/tex].
- Substituting this into the perimeter formula, we get [tex]\( P = 2((w + 4) + w) \)[/tex].
5. Simplify the perimeter equation:
- Substitute the full perimeter value (72 meters): [tex]\( 72 = 2(w + 4 + w) \)[/tex].
- Combine like terms inside the parentheses: [tex]\( 72 = 2(2w + 4) \)[/tex].
6. Distribute and solve for [tex]\( w \)[/tex]:
- Distribute the 2: [tex]\( 72 = 4w + 8 \)[/tex].
- Subtract 8 from both sides: [tex]\( 72 - 8 = 4w \)[/tex].
- Simplify: [tex]\( 64 = 4w \)[/tex].
7. Solve for the width [tex]\( w \)[/tex]:
- Divide both sides by 4: [tex]\( w = \frac{64}{4} = 16 \)[/tex].
8. Find the length [tex]\( l \)[/tex]:
- Since [tex]\( l = w + 4 \)[/tex], substitute [tex]\( w = 16 \)[/tex]: [tex]\( l = 16 + 4 = 20 \)[/tex].
Conclusion:
- The width of the rectangular garden is [tex]\( 16 \)[/tex] meters.
- The length of the rectangular garden is [tex]\( 20 \)[/tex] meters.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.