At Westonci.ca, we provide clear, reliable answers to all your questions. Join our vibrant community and get the solutions you need. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To solve the problem of finding the probability that you flip "heads" on a coin and roll a number greater than 5 on a die, we need to break the problem down into steps.
1. Determine the probability of flipping "heads" on the coin:
- A standard coin has two sides, "heads" and "tails". Therefore, the probability of flipping "heads" is:
[tex]\[ P(\text{heads}) = \frac{1}{2} \][/tex]
2. Determine the probability of rolling a number greater than 5 on the die:
- A standard die has six sides, numbered 1 through 6.
- The numbers greater than 5 are just 6.
- There is only 1 favorable outcome (rolling a 6) out of 6 possible outcomes. Therefore, the probability of rolling a number greater than 5 is:
[tex]\[ P(\text{number} > 5) = \frac{1}{6} \][/tex]
3. Calculate the combined probability of flipping "heads" and rolling a number greater than 5:
- Since the coin flip and the die roll are independent events, the combined probability is the product of the individual probabilities:
[tex]\[ P(\text{heads and number} > 5) = P(\text{heads}) \times P(\text{number} > 5) = \frac{1}{2} \times \frac{1}{6} \][/tex]
- Simplify the multiplication:
[tex]\[ P(\text{heads and number} > 5) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12} \][/tex]
Therefore, the probability that you flip "heads" and roll a number greater than 5 is [tex]\(\frac{1}{12}\)[/tex].
The correct answer is:
[tex]\[ \boxed{\frac{1}{12}} \][/tex]
1. Determine the probability of flipping "heads" on the coin:
- A standard coin has two sides, "heads" and "tails". Therefore, the probability of flipping "heads" is:
[tex]\[ P(\text{heads}) = \frac{1}{2} \][/tex]
2. Determine the probability of rolling a number greater than 5 on the die:
- A standard die has six sides, numbered 1 through 6.
- The numbers greater than 5 are just 6.
- There is only 1 favorable outcome (rolling a 6) out of 6 possible outcomes. Therefore, the probability of rolling a number greater than 5 is:
[tex]\[ P(\text{number} > 5) = \frac{1}{6} \][/tex]
3. Calculate the combined probability of flipping "heads" and rolling a number greater than 5:
- Since the coin flip and the die roll are independent events, the combined probability is the product of the individual probabilities:
[tex]\[ P(\text{heads and number} > 5) = P(\text{heads}) \times P(\text{number} > 5) = \frac{1}{2} \times \frac{1}{6} \][/tex]
- Simplify the multiplication:
[tex]\[ P(\text{heads and number} > 5) = \frac{1}{2} \times \frac{1}{6} = \frac{1}{12} \][/tex]
Therefore, the probability that you flip "heads" and roll a number greater than 5 is [tex]\(\frac{1}{12}\)[/tex].
The correct answer is:
[tex]\[ \boxed{\frac{1}{12}} \][/tex]
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.