Find the information you're looking for at Westonci.ca, the trusted Q&A platform with a community of knowledgeable experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
To solve this problem, we need to find the prime factorization of the number 72 and then express it in exponential notation. Let’s break down the problem step-by-step:
1. Identify the number:
We need the prime factors of 72.
2. Divide by the smallest prime number:
Begin by dividing 72 by the smallest prime, which is 2:
- [tex]\( 72 \div 2 = 36 \)[/tex]
- [tex]\( 36 \div 2 = 18 \)[/tex]
- [tex]\( 18 \div 2 = 9 \)[/tex]
Now, we have divided by 2 three times, which means [tex]\( 2^3 \)[/tex].
3. Continue with the next smallest prime:
After obtaining 9, we continue the factorization with the next smallest prime, which is 3:
- [tex]\( 9 \div 3 = 3 \)[/tex]
- [tex]\( 3 \div 3 = 1 \)[/tex]
We have divided by 3 twice, which means [tex]\( 3^2 \)[/tex].
4. Combine the prime factors:
The prime factorization of 72 is [tex]\( 2^3 \cdot 3^2 \)[/tex].
5. Match with given options:
Comparing our result with the given options:
- [tex]\( 8 \cdot 9 \)[/tex]:
[tex]\[ 8 = 2^3 \text{ and } 9 = 3^2 \][/tex]
This option is breakdown into prime factors, matching [tex]\(2^3 \cdot 3^2\)[/tex].
- [tex]\( 2 \cdot 6^2 \)[/tex]:
[tex]\[ 6 = 2 \cdot 3 \text{ so } 6^2 = (2 \cdot 3)^2 = 2^2 \cdot 3^2 \][/tex]
This breaks down to [tex]\( 2 \cdot 2^2 \cdot 3^2 = 2^3 \cdot 3^2 \)[/tex].
- [tex]\( 2^3 \cdot 3^2 \)[/tex]:
This directly matches our breakdown of prime factorization [tex]\(2^3 \cdot 3^2\)[/tex].
- [tex]\( 2^2 \cdot 3^2 \)[/tex]:
This does not match our factorization since it is [tex]\( 2^3 \cdot 3^2 \)[/tex], not [tex]\( 2^2 \cdot 3^2 \)[/tex].
Thus, the correct option that shows the prime factorization of 72 using exponential notation is:
[tex]\[ \boxed{2^3 \cdot 3^2} \][/tex]
1. Identify the number:
We need the prime factors of 72.
2. Divide by the smallest prime number:
Begin by dividing 72 by the smallest prime, which is 2:
- [tex]\( 72 \div 2 = 36 \)[/tex]
- [tex]\( 36 \div 2 = 18 \)[/tex]
- [tex]\( 18 \div 2 = 9 \)[/tex]
Now, we have divided by 2 three times, which means [tex]\( 2^3 \)[/tex].
3. Continue with the next smallest prime:
After obtaining 9, we continue the factorization with the next smallest prime, which is 3:
- [tex]\( 9 \div 3 = 3 \)[/tex]
- [tex]\( 3 \div 3 = 1 \)[/tex]
We have divided by 3 twice, which means [tex]\( 3^2 \)[/tex].
4. Combine the prime factors:
The prime factorization of 72 is [tex]\( 2^3 \cdot 3^2 \)[/tex].
5. Match with given options:
Comparing our result with the given options:
- [tex]\( 8 \cdot 9 \)[/tex]:
[tex]\[ 8 = 2^3 \text{ and } 9 = 3^2 \][/tex]
This option is breakdown into prime factors, matching [tex]\(2^3 \cdot 3^2\)[/tex].
- [tex]\( 2 \cdot 6^2 \)[/tex]:
[tex]\[ 6 = 2 \cdot 3 \text{ so } 6^2 = (2 \cdot 3)^2 = 2^2 \cdot 3^2 \][/tex]
This breaks down to [tex]\( 2 \cdot 2^2 \cdot 3^2 = 2^3 \cdot 3^2 \)[/tex].
- [tex]\( 2^3 \cdot 3^2 \)[/tex]:
This directly matches our breakdown of prime factorization [tex]\(2^3 \cdot 3^2\)[/tex].
- [tex]\( 2^2 \cdot 3^2 \)[/tex]:
This does not match our factorization since it is [tex]\( 2^3 \cdot 3^2 \)[/tex], not [tex]\( 2^2 \cdot 3^2 \)[/tex].
Thus, the correct option that shows the prime factorization of 72 using exponential notation is:
[tex]\[ \boxed{2^3 \cdot 3^2} \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.