Westonci.ca makes finding answers easy, with a community of experts ready to provide you with the information you seek. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the average rate of change (or speed) of the distance runner during the interval from 0.75 hours to 1.00 hours, we need to follow a step-by-step process:
1. Identify the relevant points:
- Time at the start of the interval ([tex]\( t_1 \)[/tex]): 0.75 hours.
- Distance at the start of the interval ([tex]\( d_1 \)[/tex]): 3.50 miles.
- Time at the end of the interval ([tex]\( t_2 \)[/tex]): 1.00 hours.
- Distance at the end of the interval ([tex]\( d_2 \)[/tex]): 4.75 miles.
2. Calculate the change in time ([tex]\( \Delta t \)[/tex]):
[tex]\[ \Delta t = t_2 - t_1 = 1.00 \, \text{hours} - 0.75 \, \text{hours} = 0.25 \, \text{hours} \][/tex]
3. Calculate the change in distance ([tex]\( \Delta d \)[/tex]):
[tex]\[ \Delta d = d_2 - d_1 = 4.75 \, \text{miles} - 3.50 \, \text{miles} = 1.25 \, \text{miles} \][/tex]
4. Determine the average rate of change (speed):
[tex]\[ \text{Average rate of change} = \frac{\Delta d}{\Delta t} = \frac{1.25 \, \text{miles}}{0.25 \, \text{hours}} \][/tex]
5. Simplify the result:
[tex]\[ \frac{1.25 \, \text{miles}}{0.25 \, \text{hours}} = 5.0 \, \text{miles per hour} \][/tex]
Therefore, the average rate of change, or the runner's speed, during the interval from 0.75 to 1.00 hours is [tex]\(5.0\)[/tex] miles per hour.
Thus, the correct answer is [tex]\( \boxed{5.00 \, \text{miles per hour}} \)[/tex].
1. Identify the relevant points:
- Time at the start of the interval ([tex]\( t_1 \)[/tex]): 0.75 hours.
- Distance at the start of the interval ([tex]\( d_1 \)[/tex]): 3.50 miles.
- Time at the end of the interval ([tex]\( t_2 \)[/tex]): 1.00 hours.
- Distance at the end of the interval ([tex]\( d_2 \)[/tex]): 4.75 miles.
2. Calculate the change in time ([tex]\( \Delta t \)[/tex]):
[tex]\[ \Delta t = t_2 - t_1 = 1.00 \, \text{hours} - 0.75 \, \text{hours} = 0.25 \, \text{hours} \][/tex]
3. Calculate the change in distance ([tex]\( \Delta d \)[/tex]):
[tex]\[ \Delta d = d_2 - d_1 = 4.75 \, \text{miles} - 3.50 \, \text{miles} = 1.25 \, \text{miles} \][/tex]
4. Determine the average rate of change (speed):
[tex]\[ \text{Average rate of change} = \frac{\Delta d}{\Delta t} = \frac{1.25 \, \text{miles}}{0.25 \, \text{hours}} \][/tex]
5. Simplify the result:
[tex]\[ \frac{1.25 \, \text{miles}}{0.25 \, \text{hours}} = 5.0 \, \text{miles per hour} \][/tex]
Therefore, the average rate of change, or the runner's speed, during the interval from 0.75 to 1.00 hours is [tex]\(5.0\)[/tex] miles per hour.
Thus, the correct answer is [tex]\( \boxed{5.00 \, \text{miles per hour}} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.