Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get detailed answers to your questions from a community of experts dedicated to providing accurate information. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To determine the solution set for the inequality [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex], we will proceed through the analysis step by step.
1. Rewrite the inequality: [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex]
2. Clear the fraction: Multiply both sides by [tex]\(4x\)[/tex] (Note: [tex]\(x \neq 0\)[/tex] to avoid division by zero). The inequality becomes:
[tex]\[ x^2 \leq 36 \][/tex]
3. Solve the quadratic inequality:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
This can be rewritten as:
[tex]\[ (x - 6)(x + 6) \leq 0 \][/tex]
4. Determine the critical points: The critical points, where the expression changes sign, are [tex]\(x = 6\)[/tex] and [tex]\(x = -6\)[/tex].
5. Analyze intervals: We will test the intervals determined by the critical points [tex]\([-6, 6]\)[/tex] to see where the inequality holds true:
- For [tex]\(x < -6\)[/tex] (e.g., [tex]\(x = -7\)[/tex]):
[tex]\[ (-7)^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
- For [tex]\(-6 \leq x \leq 6\)[/tex]:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
For any [tex]\(x\)[/tex] in this range, the value of [tex]\(x^2 - 36\)[/tex] is non-positive.
- For [tex]\(x > 6\)[/tex] (e.g., [tex]\(x = 7\)[/tex]):
[tex]\[ 7^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
6. Conclusion: The solution set of [tex]\((x - 6)(x + 6) \leq 0\)[/tex] is the interval that lies between the critical points where the inequality holds, inclusive of the critical points themselves.
Thus, the solution set of [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex] is:
[tex]\[ \boxed{[-6, 6]} \][/tex]
1. Rewrite the inequality: [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex]
2. Clear the fraction: Multiply both sides by [tex]\(4x\)[/tex] (Note: [tex]\(x \neq 0\)[/tex] to avoid division by zero). The inequality becomes:
[tex]\[ x^2 \leq 36 \][/tex]
3. Solve the quadratic inequality:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
This can be rewritten as:
[tex]\[ (x - 6)(x + 6) \leq 0 \][/tex]
4. Determine the critical points: The critical points, where the expression changes sign, are [tex]\(x = 6\)[/tex] and [tex]\(x = -6\)[/tex].
5. Analyze intervals: We will test the intervals determined by the critical points [tex]\([-6, 6]\)[/tex] to see where the inequality holds true:
- For [tex]\(x < -6\)[/tex] (e.g., [tex]\(x = -7\)[/tex]):
[tex]\[ (-7)^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
- For [tex]\(-6 \leq x \leq 6\)[/tex]:
[tex]\[ x^2 - 36 \leq 0 \][/tex]
For any [tex]\(x\)[/tex] in this range, the value of [tex]\(x^2 - 36\)[/tex] is non-positive.
- For [tex]\(x > 6\)[/tex] (e.g., [tex]\(x = 7\)[/tex]):
[tex]\[ 7^2 - 36 = 49 - 36 = 13 \quad (\text{positive}) \][/tex]
Therefore, the inequality [tex]\(x^2 - 36 \leq 0\)[/tex] does not hold.
6. Conclusion: The solution set of [tex]\((x - 6)(x + 6) \leq 0\)[/tex] is the interval that lies between the critical points where the inequality holds, inclusive of the critical points themselves.
Thus, the solution set of [tex]\(\frac{x}{4} \leq \frac{9}{x}\)[/tex] is:
[tex]\[ \boxed{[-6, 6]} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.