Discover the answers you need at Westonci.ca, a dynamic Q&A platform where knowledge is shared freely by a community of experts. Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine which of the given options is the correct equation of a line in slope-intercept form with a slope of [tex]\(\frac{1}{4}\)[/tex] and a [tex]\(y\)[/tex]-intercept at (0, -1), we'll follow these steps:
1. Identify the components of the slope-intercept form:
The general equation of a line in slope-intercept form is given by:
[tex]\[ y = mx + b \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.
2. Substitute the given slope and [tex]\(y\)[/tex]-intercept into the equation:
We are given:
[tex]\[ m = \frac{1}{4} \][/tex]
and
[tex]\[ b = -1 \][/tex]
Substituting these values into the slope-intercept form equation, we get:
[tex]\[ y = \frac{1}{4}x - 1 \][/tex]
3. Compare with the given options:
[tex]\[ \begin{aligned} \text{A. } & y = \frac{1}{4} x - 1 \\ \text{B. } & y = 4 x - 1 \\ \text{C. } & y = \frac{1}{4} x + 1 \\ \text{D. } & y = -\frac{1}{4} x - \frac{1}{4} \end{aligned} \][/tex]
We see that option A matches exactly with our derived equation.
Therefore, the correct choice is
[tex]\[ \boxed{A. \ y = \frac{1}{4} x - 1} \][/tex]
1. Identify the components of the slope-intercept form:
The general equation of a line in slope-intercept form is given by:
[tex]\[ y = mx + b \][/tex]
where [tex]\(m\)[/tex] is the slope and [tex]\(b\)[/tex] is the [tex]\(y\)[/tex]-intercept.
2. Substitute the given slope and [tex]\(y\)[/tex]-intercept into the equation:
We are given:
[tex]\[ m = \frac{1}{4} \][/tex]
and
[tex]\[ b = -1 \][/tex]
Substituting these values into the slope-intercept form equation, we get:
[tex]\[ y = \frac{1}{4}x - 1 \][/tex]
3. Compare with the given options:
[tex]\[ \begin{aligned} \text{A. } & y = \frac{1}{4} x - 1 \\ \text{B. } & y = 4 x - 1 \\ \text{C. } & y = \frac{1}{4} x + 1 \\ \text{D. } & y = -\frac{1}{4} x - \frac{1}{4} \end{aligned} \][/tex]
We see that option A matches exactly with our derived equation.
Therefore, the correct choice is
[tex]\[ \boxed{A. \ y = \frac{1}{4} x - 1} \][/tex]
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.