Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.

Find all of the solutions of the polynomial equation:

[tex]\[ x^4 - 3x^3 + 3x^2 - 3x + 2 = 0 \][/tex]

A. [tex]\( x = \pm 1, x = \pm 2 \)[/tex]

B. [tex]\( x = \pm 2, x = 1 \)[/tex]

C. [tex]\( x = \pm i \text{ and } x = \pm 2 \)[/tex]

D. [tex]\( x = \pm i, x = 1, x = 2 \)[/tex]


Sagot :

To solve the polynomial equation [tex]\( x^4 - 3x^3 + 3x^2 - 3x + 2 = 0 \)[/tex], we need to find all the roots of the polynomial. Let’s go through the steps to find these roots analytically:

1. Write down the polynomial:
[tex]\[ f(x) = x^4 - 3x^3 + 3x^2 - 3x + 2 \][/tex]

2. Try to factor the polynomial:
One way to factorize a polynomial is to use the Rational Root Theorem, which suggests that potential rational roots are factors of the constant term (in this case, [tex]\(2\)[/tex]) divided by factors of the leading coefficient (which is [tex]\(1\)[/tex]).

The potential rational roots are [tex]\( \pm 1, \pm 2 \)[/tex].

3. Test potential rational roots:
Let's test [tex]\(x = 1\)[/tex]:
[tex]\[ f(1) = 1^4 - 3(1)^3 + 3(1)^2 - 3(1) + 2 = 1 - 3 + 3 - 3 + 2 = 0 \][/tex]
This indicates that [tex]\(x = 1\)[/tex] is a root.

Next, we use synthetic division or polynomial division to divide [tex]\(f(x)\)[/tex] by [tex]\(x - 1\)[/tex].

4. Perform polynomial division by [tex]\(x - 1\)[/tex]:
[tex]\[ x^4 - 3x^3 + 3x^2 - 3x + 2 \div (x - 1) \][/tex]

Using synthetic division:
[tex]\[ \begin{array}{r|rrrrr} 1 & 1 & -3 & 3 & -3 & 2 \\ & & 1 & -2 & 1 & -2\\ \hline & 1 & -2 & 1 & -2 & 0\\ \end{array} \][/tex]
The quotient is [tex]\(x^3 - 2x^2 + x - 2\)[/tex].

5. Repeat the process for [tex]\(x^3 - 2x^2 + x - 2\)[/tex]:

Test [tex]\(x = 1\)[/tex] for [tex]\(x^3 - 2x^2 + x - 2\)[/tex]:
[tex]\[ f(1) = 1^3 - 2(1)^2 + 1 - 2 = 1 - 2 + 1 - 2 = -2 \neq 0 \][/tex]
Test [tex]\(x = -1\)[/tex]:
[tex]\[ f(-1) = (-1)^3 - 2(-1)^2 + (-1) - 2 = -1 - 2 - 1 - 2 = -6 \neq 0 \][/tex]
Test [tex]\( x = 2\)[/tex]:
[tex]\[ f(2) = 2^3 - 2(2)^2 + 2 - 2 = 8 - 8 + 2 - 2 = 0 \][/tex]
This indicates [tex]\(x = 2\)[/tex] is a root.

6. Perform polynomial division by [tex]\(x - 2\)[/tex]:
[tex]\[ x^3 - 2x^2 + x - 2 \div (x - 2) \][/tex]
Using synthetic division:
[tex]\[ \begin{array}{r|rrrr} 2 & 1 & -2 & 1 & -2 \\ & & 2 & 0 & 2\\ \hline & 1 & 0 & 1 & 0\\ \end{array} \][/tex]
The quotient is [tex]\(x^2 + 1\)[/tex].

7. Solve the quadratic equation [tex]\(x^2 + 1 = 0\)[/tex]:
[tex]\[ x^2 + 1 = 0 \Rightarrow x^2 = -1 \Rightarrow x = \pm i \][/tex]

8. Combine all the roots found:

Therefore, the solutions to the polynomial equation are:
[tex]\[ \boxed{x = 1, x = 2, x = -i, x = i} \][/tex]

The correct choice is:
[tex]\[ x = \pm i, x = 1, x = 2 \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.