Welcome to Westonci.ca, where finding answers to your questions is made simple by our community of experts. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Pregunta 2:
Dadas dos cargas de [tex]\(2.8 \mu C\)[/tex] y [tex]\(-7.5 \mu C\)[/tex] que se atraen con una fuerza de [tex]\(10 N\)[/tex], nos piden determinar la distancia de separación entre dichas cargas.
Solución:
1. Las cargas están dadas en microculombios. Entonces, convertimos:
[tex]\[ q_1 = 2.8 \mu C = 2.8 \times 10^{-6} \, C \][/tex]
[tex]\[ q_2 = -7.5 \mu C = -7.5 \times 10^{-6} \, C \][/tex]
2. La fuerza de atracción entre las cargas es:
[tex]\[ F = 10 \, N \][/tex]
3. La constante de Coulomb ([tex]\(k\)[/tex]) se conoce como:
[tex]\[ k = 8.99 \times 10^9 \, N \cdot m^2 / C^2 \][/tex]
4. Usamos la ley de Coulomb que establece la relación de la fuerza entre dos cargas:
[tex]\[ F = k \frac{\left|q_1 \cdot q_2\right|}{d^2} \][/tex]
5. Queremos despejar la distancia ([tex]\(d\)[/tex]), así que reordenamos la fórmula:
[tex]\[ d^2 = k \frac{\left|q_1 \cdot q_2\right|}{F} \][/tex]
6. Calculamos el valor absoluto del producto de las cargas:
[tex]\[ \left|q_1 \cdot q_2\right| = \left| (2.8 \times 10^{-6}) \cdot (-7.5 \times 10^{-6}) \right| \][/tex]
[tex]\[ = \left| -2.1 \times 10^{-11} \right| \][/tex]
[tex]\[ = 2.1 \times 10^{-11} C^2 \][/tex]
7. Sustituimos los valores en la fórmula del cuadrado de la distancia:
[tex]\[ d^2 = \frac{8.99 \times 10^9 \, N \cdot m^2 / C^2 \times 2.1 \times 10^{-11} \, C^2}{10 \, N} \][/tex]
[tex]\[ = 0.018879 \, m^2 \][/tex]
8. Finalmente, para encontrar [tex]\(d\)[/tex], tomamos la raíz cuadrada del resultado:
[tex]\[ d = \sqrt{0.018879 \, m^2} \][/tex]
[tex]\[ d \approx 0.1374 \, m \][/tex]
Respuesta: La distancia de separación entre las cargas es aproximadamente [tex]\(d = 0.1374 \, m\)[/tex].
---
Pregunta 3:
Un dispositivo de una parrilla eléctrica que consume [tex]\(6 A\)[/tex] necesita determinarse su voltaje si su resistencia es de [tex]\(20 \Omega\)[/tex].
Solución:
1. Aplicamos la Ley de Ohm, que establece:
[tex]\[ V = I \cdot R \][/tex]
2. Donde:
[tex]\[ I = 6 \, A \quad (la corriente) \][/tex]
[tex]\[ R = 20 \, \Omega \quad (la resistencia) \][/tex]
3. Sustituimos los valores en la fórmula:
[tex]\[ V = 6 \, A \times 20 \, \Omega \][/tex]
[tex]\[ V = 120 \, V \][/tex]
Respuesta: El voltaje de la parrilla eléctrica es [tex]\(120 \, V\)[/tex].
Dadas dos cargas de [tex]\(2.8 \mu C\)[/tex] y [tex]\(-7.5 \mu C\)[/tex] que se atraen con una fuerza de [tex]\(10 N\)[/tex], nos piden determinar la distancia de separación entre dichas cargas.
Solución:
1. Las cargas están dadas en microculombios. Entonces, convertimos:
[tex]\[ q_1 = 2.8 \mu C = 2.8 \times 10^{-6} \, C \][/tex]
[tex]\[ q_2 = -7.5 \mu C = -7.5 \times 10^{-6} \, C \][/tex]
2. La fuerza de atracción entre las cargas es:
[tex]\[ F = 10 \, N \][/tex]
3. La constante de Coulomb ([tex]\(k\)[/tex]) se conoce como:
[tex]\[ k = 8.99 \times 10^9 \, N \cdot m^2 / C^2 \][/tex]
4. Usamos la ley de Coulomb que establece la relación de la fuerza entre dos cargas:
[tex]\[ F = k \frac{\left|q_1 \cdot q_2\right|}{d^2} \][/tex]
5. Queremos despejar la distancia ([tex]\(d\)[/tex]), así que reordenamos la fórmula:
[tex]\[ d^2 = k \frac{\left|q_1 \cdot q_2\right|}{F} \][/tex]
6. Calculamos el valor absoluto del producto de las cargas:
[tex]\[ \left|q_1 \cdot q_2\right| = \left| (2.8 \times 10^{-6}) \cdot (-7.5 \times 10^{-6}) \right| \][/tex]
[tex]\[ = \left| -2.1 \times 10^{-11} \right| \][/tex]
[tex]\[ = 2.1 \times 10^{-11} C^2 \][/tex]
7. Sustituimos los valores en la fórmula del cuadrado de la distancia:
[tex]\[ d^2 = \frac{8.99 \times 10^9 \, N \cdot m^2 / C^2 \times 2.1 \times 10^{-11} \, C^2}{10 \, N} \][/tex]
[tex]\[ = 0.018879 \, m^2 \][/tex]
8. Finalmente, para encontrar [tex]\(d\)[/tex], tomamos la raíz cuadrada del resultado:
[tex]\[ d = \sqrt{0.018879 \, m^2} \][/tex]
[tex]\[ d \approx 0.1374 \, m \][/tex]
Respuesta: La distancia de separación entre las cargas es aproximadamente [tex]\(d = 0.1374 \, m\)[/tex].
---
Pregunta 3:
Un dispositivo de una parrilla eléctrica que consume [tex]\(6 A\)[/tex] necesita determinarse su voltaje si su resistencia es de [tex]\(20 \Omega\)[/tex].
Solución:
1. Aplicamos la Ley de Ohm, que establece:
[tex]\[ V = I \cdot R \][/tex]
2. Donde:
[tex]\[ I = 6 \, A \quad (la corriente) \][/tex]
[tex]\[ R = 20 \, \Omega \quad (la resistencia) \][/tex]
3. Sustituimos los valores en la fórmula:
[tex]\[ V = 6 \, A \times 20 \, \Omega \][/tex]
[tex]\[ V = 120 \, V \][/tex]
Respuesta: El voltaje de la parrilla eléctrica es [tex]\(120 \, V\)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting Westonci.ca, your go-to source for reliable answers. Come back soon for more expert insights.