Westonci.ca is your trusted source for accurate answers to all your questions. Join our community and start learning today! Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
To determine the mass of the International Space Station (ISS), we can use the formula for gravitational force:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( F = 4.64 \times 10^{-6} \)[/tex] N (gravitational force)
- [tex]\( m_1 = 112 \)[/tex] kg (mass of the astronaut)
- [tex]\( r = 26 \)[/tex] m (distance between the astronaut and the ISS)
- [tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-1}\)[/tex] (gravitational constant)
We want to solve for [tex]\( m_2 \)[/tex], which is the mass of the ISS.
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F r^2}{G m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{4.64 \times 10^{-6} \times 26^2}{6.67430 \times 10^{-11} \times 112} \][/tex]
Calculate the numerator:
[tex]\[ 4.64 \times 10^{-6} \times 26^2 = 4.64 \times 10^{-6} \times 676 = 3.13824 \times 10^{-3} \][/tex]
Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 112 = 7.475216 \times 10^{-9} \][/tex]
Now, divide the results to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{3.13824 \times 10^{-3}}{7.475216 \times 10^{-9}} = 419605.27 \, \text{kg} \][/tex]
Express the final result using two significant figures:
[tex]\[ m_2 \approx 4.2 \times 10^5 \, \text{kg} \][/tex]
Thus, the mass of the ISS is approximately [tex]\( \boxed{4.2 \times 10^5} \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
Given:
- [tex]\( F = 4.64 \times 10^{-6} \)[/tex] N (gravitational force)
- [tex]\( m_1 = 112 \)[/tex] kg (mass of the astronaut)
- [tex]\( r = 26 \)[/tex] m (distance between the astronaut and the ISS)
- [tex]\( G = 6.67430 \times 10^{-11} \)[/tex] m[tex]\(^3\)[/tex]kg[tex]\(^{-1}\)[/tex]s[tex]\(^{-1}\)[/tex] (gravitational constant)
We want to solve for [tex]\( m_2 \)[/tex], which is the mass of the ISS.
Rearrange the formula to solve for [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{F r^2}{G m_1} \][/tex]
Substitute the known values into the equation:
[tex]\[ m_2 = \frac{4.64 \times 10^{-6} \times 26^2}{6.67430 \times 10^{-11} \times 112} \][/tex]
Calculate the numerator:
[tex]\[ 4.64 \times 10^{-6} \times 26^2 = 4.64 \times 10^{-6} \times 676 = 3.13824 \times 10^{-3} \][/tex]
Calculate the denominator:
[tex]\[ 6.67430 \times 10^{-11} \times 112 = 7.475216 \times 10^{-9} \][/tex]
Now, divide the results to find [tex]\( m_2 \)[/tex]:
[tex]\[ m_2 = \frac{3.13824 \times 10^{-3}}{7.475216 \times 10^{-9}} = 419605.27 \, \text{kg} \][/tex]
Express the final result using two significant figures:
[tex]\[ m_2 \approx 4.2 \times 10^5 \, \text{kg} \][/tex]
Thus, the mass of the ISS is approximately [tex]\( \boxed{4.2 \times 10^5} \, \text{kg} \)[/tex].
Thank you for your visit. We are dedicated to helping you find the information you need, whenever you need it. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.