Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate answers to your questions from a wide network of experienced professionals on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine the mass of the lighter canoe, we will use Newton's law of universal gravitation, which states that the gravitational force [tex]\( F \)[/tex] between two masses [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] separated by a distance [tex]\( r \)[/tex] is given by the formula:
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
[tex]\[ F = G \frac{m_1 m_2}{r^2} \][/tex]
where:
- [tex]\( G \)[/tex] is the gravitational constant ([tex]\( 6.67430 \times 10^{-11} \, \text{m}^3 \text{kg}^{-1} \text{s}^{-2} \)[/tex])
- [tex]\( F \)[/tex] is the gravitational force ([tex]\( 2.378 \times 10^{-13} \, \text{N} \)[/tex])
- [tex]\( r \)[/tex] is the separation distance ([tex]\( 1,500 \, \text{m} \)[/tex])
- [tex]\( m_1 \)[/tex] and [tex]\( m_2 \)[/tex] are the masses of the two canoes
We are given that one canoe is twice as massive as the other. Let's denote the mass of the lighter canoe as [tex]\( m \)[/tex]. Therefore, the mass of the heavier canoe will be [tex]\( 2m \)[/tex].
Using the given values in the gravitational force formula:
[tex]\[ 2.378 \times 10^{-13} = G \frac{m \cdot 2m}{(1500)^2} \][/tex]
Substitute [tex]\( G \)[/tex] and solve for [tex]\( m \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{(1500)^2} \][/tex]
Let's isolate [tex]\( m^2 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \frac{2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = 6.67430 \times 10^{-11} \cdot \frac{2m^2}{2250000} \][/tex]
Simplify the equation:
[tex]\[ 2.378 \times 10^{-13} = \frac{6.67430 \times 10^{-11} \cdot 2m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
[tex]\[ 2.378 \times 10^{-13} = \frac{1.33486 \times 10^{-10} m^2}{2250000} \][/tex]
Multiply both sides by [tex]\( 2250000 \)[/tex]:
[tex]\[ 2.378 \times 10^{-13} \times 2250000 = 1.33486 \times 10^{-10} m^2 \][/tex]
[tex]\[ 5.3505 \times 10^{-7} = 1.33486 \times 10^{-10} m^2 \][/tex]
Now divide by [tex]\( 1.33486 \times 10^{-10} \)[/tex] to isolate [tex]\( m^2 \)[/tex]:
[tex]\[ m^2 = \frac{5.3505 \times 10^{-7}}{1.33486 \times 10^{-10}} \][/tex]
[tex]\[ m^2 \approx 4008.285513087515 \][/tex]
Take the square root of both sides to solve for [tex]\( m \)[/tex]:
[tex]\[ m \approx \sqrt{4008.285513087515} \][/tex]
[tex]\[ m \approx 63.311022050568056 \][/tex]
Rounded to two significant figures:
[tex]\[ m \approx 63.31 \, \text{kg} \][/tex]
Thus, the mass of the lighter canoe is approximately [tex]\( 63 \, \text{kg} \)[/tex].
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.