Westonci.ca offers fast, accurate answers to your questions. Join our community and get the insights you need now. Get immediate and reliable solutions to your questions from a knowledgeable community of professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Let's break down the problem step-by-step to find the correct inequality and possible values of [tex]\( y \)[/tex].
1. Identify the given information:
- Maximum amount Alina spent on gas: \[tex]$45. - Cost per gallon at the first gas station: \$[/tex]3.50.
- Cost per gallon at the second gas station: \[tex]$4.00. 2. Formulate the inequality: - Let \( x \) be the number of gallons bought at the first gas station. - Let \( y \) be the number of gallons bought at the second gas station. - The total amount spent on gas cannot exceed \$[/tex]45, so we can write the inequality as:
[tex]\[ 3.5x + 4y \leq 45 \][/tex]
3. Determine the possible values of [tex]\( y \)[/tex]:
- First, recognize that [tex]\( x \)[/tex] and [tex]\( y \)[/tex] must be non-negative since you can't buy a negative amount of gas:
[tex]\[ x \geq 0 \quad \text{and} \quad y \geq 0 \][/tex]
- To find the maximum value of [tex]\( y \)[/tex], consider the scenario where [tex]\( x = 0 \)[/tex]:
[tex]\[ 3.5(0) + 4y \leq 45 \implies 4y \leq 45 \implies y \leq \frac{45}{4} \implies y \leq 11.25 \][/tex]
- To find the minimum value of [tex]\( y \)[/tex], recognize again that y must be non-negative:
[tex]\[ y \geq 0 \][/tex]
Therefore, the inequality and the range of possible values of [tex]\( y \)[/tex] are:
[tex]\[ 3.5x + 4y \leq 45, \quad 0 \leq y \leq 11.25 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3.5 x+4 y \leq 45,0 \leq y \leq 11.25} \][/tex]
1. Identify the given information:
- Maximum amount Alina spent on gas: \[tex]$45. - Cost per gallon at the first gas station: \$[/tex]3.50.
- Cost per gallon at the second gas station: \[tex]$4.00. 2. Formulate the inequality: - Let \( x \) be the number of gallons bought at the first gas station. - Let \( y \) be the number of gallons bought at the second gas station. - The total amount spent on gas cannot exceed \$[/tex]45, so we can write the inequality as:
[tex]\[ 3.5x + 4y \leq 45 \][/tex]
3. Determine the possible values of [tex]\( y \)[/tex]:
- First, recognize that [tex]\( x \)[/tex] and [tex]\( y \)[/tex] must be non-negative since you can't buy a negative amount of gas:
[tex]\[ x \geq 0 \quad \text{and} \quad y \geq 0 \][/tex]
- To find the maximum value of [tex]\( y \)[/tex], consider the scenario where [tex]\( x = 0 \)[/tex]:
[tex]\[ 3.5(0) + 4y \leq 45 \implies 4y \leq 45 \implies y \leq \frac{45}{4} \implies y \leq 11.25 \][/tex]
- To find the minimum value of [tex]\( y \)[/tex], recognize again that y must be non-negative:
[tex]\[ y \geq 0 \][/tex]
Therefore, the inequality and the range of possible values of [tex]\( y \)[/tex] are:
[tex]\[ 3.5x + 4y \leq 45, \quad 0 \leq y \leq 11.25 \][/tex]
Hence, the correct answer is:
[tex]\[ \boxed{3.5 x+4 y \leq 45,0 \leq y \leq 11.25} \][/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.