Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To find the exact value of [tex]\( s \)[/tex] in the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] where [tex]\(\sin s = \frac{\sqrt{2}}{2}\)[/tex], follow these steps:
1. Recall Known Sine Values:
We need to identify the angle [tex]\( s \)[/tex] whose sine value is [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. From the unit circle and trigonometric values, we know that:
[tex]\[ \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
2. Identify the Interval:
The interval given is [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex]. Within this interval, [tex]\(\frac{\pi}{4}\)[/tex] (or 45 degrees) is the angle whose sine value is [tex]\(\frac{\sqrt{2}}{2}\)[/tex].
3. Express in Radians:
Since [tex]\(\frac{\pi}{4}\)[/tex] lies within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex], we have:
[tex]\[ s = \frac{\pi}{4} \][/tex]
Thus, the exact value of [tex]\( s \)[/tex] that satisfies [tex]\(\sin s = \frac{\sqrt{2}}{2}\)[/tex] within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = \frac{\pi}{4} \text{ radians} \][/tex]
Alternatively, the numerical value of [tex]\(\frac{\pi}{4}\)[/tex] in decimal form is approximately [tex]\(0.7853981633974483\)[/tex] radians. So the angle [tex]\( s \)[/tex] can also be expressed as:
[tex]\[ s \approx 0.7853981633974483 \text{ radians} \][/tex]
Therefore, [tex]\( s = \frac{\pi}{4} \text{ radians}\)[/tex].
1. Recall Known Sine Values:
We need to identify the angle [tex]\( s \)[/tex] whose sine value is [tex]\(\frac{\sqrt{2}}{2}\)[/tex]. From the unit circle and trigonometric values, we know that:
[tex]\[ \sin \left(\frac{\pi}{4}\right) = \frac{\sqrt{2}}{2} \][/tex]
2. Identify the Interval:
The interval given is [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex]. Within this interval, [tex]\(\frac{\pi}{4}\)[/tex] (or 45 degrees) is the angle whose sine value is [tex]\(\frac{\sqrt{2}}{2}\)[/tex].
3. Express in Radians:
Since [tex]\(\frac{\pi}{4}\)[/tex] lies within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex], we have:
[tex]\[ s = \frac{\pi}{4} \][/tex]
Thus, the exact value of [tex]\( s \)[/tex] that satisfies [tex]\(\sin s = \frac{\sqrt{2}}{2}\)[/tex] within the interval [tex]\(\left[0, \frac{\pi}{2}\right]\)[/tex] is:
[tex]\[ s = \frac{\pi}{4} \text{ radians} \][/tex]
Alternatively, the numerical value of [tex]\(\frac{\pi}{4}\)[/tex] in decimal form is approximately [tex]\(0.7853981633974483\)[/tex] radians. So the angle [tex]\( s \)[/tex] can also be expressed as:
[tex]\[ s \approx 0.7853981633974483 \text{ radians} \][/tex]
Therefore, [tex]\( s = \frac{\pi}{4} \text{ radians}\)[/tex].
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.