Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
To determine which statement is logically equivalent to the given conditional statement [tex]\(\sim p \rightarrow q\)[/tex], we'll use logical equivalences, specifically focusing on the concept of contrapositives.
A conditional statement of the form [tex]\(A \rightarrow B\)[/tex] is logically equivalent to its contrapositive, [tex]\(\sim B \rightarrow \sim A\)[/tex]. This means that the truth value of the conditional statement remains the same when we switch the implication around and negate both parts.
Given the statement [tex]\(\sim p \rightarrow q\)[/tex]:
1. Identify the components of the statement:
- [tex]\(A\)[/tex] in this case is [tex]\(\sim p\)[/tex].
- [tex]\(B\)[/tex] in this case is [tex]\(q\)[/tex].
2. Form the contrapositive of [tex]\(\sim p \rightarrow q\)[/tex]:
- The contrapositive is obtained by negating both parts and reversing the implication.
- So, we negate [tex]\(q\)[/tex], which gives [tex]\(\sim q\)[/tex].
- We negate [tex]\(\sim p\)[/tex], which simplifies to [tex]\(p\)[/tex].
- The contrapositive of [tex]\(\sim p \rightarrow q\)[/tex] is then [tex]\(\sim q \rightarrow p\)[/tex].
3. Verify the options provided to identify the equivalent statement:
- [tex]\(p \rightarrow \sim q\)[/tex]
- [tex]\(\sim p \rightarrow \sim q\)[/tex]
- [tex]\(\sim q \rightarrow \sim p\)[/tex]
- [tex]\(\sim q \rightarrow p\)[/tex]
Among these, the statement that matches the contrapositive we derived, [tex]\(\sim q \rightarrow p\)[/tex], is:
[tex]\(\sim q \rightarrow \sim p\)[/tex]
Therefore, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is:
[tex]\(\sim q \rightarrow \sim p\)[/tex]
A conditional statement of the form [tex]\(A \rightarrow B\)[/tex] is logically equivalent to its contrapositive, [tex]\(\sim B \rightarrow \sim A\)[/tex]. This means that the truth value of the conditional statement remains the same when we switch the implication around and negate both parts.
Given the statement [tex]\(\sim p \rightarrow q\)[/tex]:
1. Identify the components of the statement:
- [tex]\(A\)[/tex] in this case is [tex]\(\sim p\)[/tex].
- [tex]\(B\)[/tex] in this case is [tex]\(q\)[/tex].
2. Form the contrapositive of [tex]\(\sim p \rightarrow q\)[/tex]:
- The contrapositive is obtained by negating both parts and reversing the implication.
- So, we negate [tex]\(q\)[/tex], which gives [tex]\(\sim q\)[/tex].
- We negate [tex]\(\sim p\)[/tex], which simplifies to [tex]\(p\)[/tex].
- The contrapositive of [tex]\(\sim p \rightarrow q\)[/tex] is then [tex]\(\sim q \rightarrow p\)[/tex].
3. Verify the options provided to identify the equivalent statement:
- [tex]\(p \rightarrow \sim q\)[/tex]
- [tex]\(\sim p \rightarrow \sim q\)[/tex]
- [tex]\(\sim q \rightarrow \sim p\)[/tex]
- [tex]\(\sim q \rightarrow p\)[/tex]
Among these, the statement that matches the contrapositive we derived, [tex]\(\sim q \rightarrow p\)[/tex], is:
[tex]\(\sim q \rightarrow \sim p\)[/tex]
Therefore, the statement that is logically equivalent to [tex]\(\sim p \rightarrow q\)[/tex] is:
[tex]\(\sim q \rightarrow \sim p\)[/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.