Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To construct a binomial probability distribution, we need to follow these steps:
1. Identify the number of trials [tex]\( n = 6 \)[/tex].
2. Identify the probability of success for a single trial [tex]\( p = 0.5 \)[/tex].
The binomial probability formula is given by:
[tex]\[ P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \][/tex]
Based on this information, we can create the distribution table by calculating the probabilities [tex]\( P(x) \)[/tex] for [tex]\( x = 0, 1, 2, 3, 4, 5, 6 \)[/tex].
Given the parameters [tex]\( n = 6 \)[/tex] and [tex]\( p = 0.5 \)[/tex], the probabilities were determined for each possible value of [tex]\( x \)[/tex].
Here is the completed probability distribution table rounded to four decimal places:
\begin{tabular}{cc|c}
[tex]$x$[/tex] & [tex]$P(x)$[/tex] & \\
\hline
0 & 0.0156 & \\
\hline
1 & 0.0938 & \\
\hline
2 & 0.2344 & \\
\hline
3 & 0.3125 & \\
\hline
4 & 0.2344 & \\
\hline
5 & 0.0938 & \\
\hline
6 & 0.0156 & \\
\hline
\end{tabular}
This table represents the binomial probability distribution for [tex]\( n = 6 \)[/tex] trials and a probability of success [tex]\( p = 0.5 \)[/tex] per trial, with each probability rounded to four decimal places as requested.
1. Identify the number of trials [tex]\( n = 6 \)[/tex].
2. Identify the probability of success for a single trial [tex]\( p = 0.5 \)[/tex].
The binomial probability formula is given by:
[tex]\[ P(X = x) = \binom{n}{x} p^x (1-p)^{n-x} \][/tex]
Based on this information, we can create the distribution table by calculating the probabilities [tex]\( P(x) \)[/tex] for [tex]\( x = 0, 1, 2, 3, 4, 5, 6 \)[/tex].
Given the parameters [tex]\( n = 6 \)[/tex] and [tex]\( p = 0.5 \)[/tex], the probabilities were determined for each possible value of [tex]\( x \)[/tex].
Here is the completed probability distribution table rounded to four decimal places:
\begin{tabular}{cc|c}
[tex]$x$[/tex] & [tex]$P(x)$[/tex] & \\
\hline
0 & 0.0156 & \\
\hline
1 & 0.0938 & \\
\hline
2 & 0.2344 & \\
\hline
3 & 0.3125 & \\
\hline
4 & 0.2344 & \\
\hline
5 & 0.0938 & \\
\hline
6 & 0.0156 & \\
\hline
\end{tabular}
This table represents the binomial probability distribution for [tex]\( n = 6 \)[/tex] trials and a probability of success [tex]\( p = 0.5 \)[/tex] per trial, with each probability rounded to four decimal places as requested.
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.