Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Ask your questions and receive detailed answers from professionals with extensive experience in various fields. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine whether the function [tex]\( f(x) = x^2 \)[/tex] increases or decreases when [tex]\( x > 1 \)[/tex], we can analyze its derivative.
1. Define the function:
[tex]\[ f(x) = x^2 \][/tex]
2. Compute the derivative of [tex]\( f(x) \)[/tex]:
Using the power rule for differentiation, which states that the derivative of [tex]\( x^n \)[/tex] is [tex]\( nx^{n-1} \)[/tex], we find:
[tex]\[ f'(x) = \frac{d}{dx}(x^2) = 2x \][/tex]
3. Analyze the sign of the derivative for [tex]\( x > 1 \)[/tex]:
We need to check the value of [tex]\( f'(x) \)[/tex] when [tex]\( x > 1 \)[/tex]. Specifically:
[tex]\[ f'(x) = 2x \][/tex]
For [tex]\( x > 1 \)[/tex], let's consider a point slightly greater than 1, say [tex]\( x = 1.1 \)[/tex].
4. Substitute [tex]\( x = 1.1 \)[/tex] into the derivative:
[tex]\[ f'(1.1) = 2 \times 1.1 = 2.2 \][/tex]
Since [tex]\( f'(1.1) = 2.2 \)[/tex] is positive, we can conclude that [tex]\( f(x) = x^2 \)[/tex] is increasing when [tex]\( x > 1 \)[/tex]. This is because the positive derivative indicates that the function's slope is positive, implying that the function is increasing in this interval.
1. Define the function:
[tex]\[ f(x) = x^2 \][/tex]
2. Compute the derivative of [tex]\( f(x) \)[/tex]:
Using the power rule for differentiation, which states that the derivative of [tex]\( x^n \)[/tex] is [tex]\( nx^{n-1} \)[/tex], we find:
[tex]\[ f'(x) = \frac{d}{dx}(x^2) = 2x \][/tex]
3. Analyze the sign of the derivative for [tex]\( x > 1 \)[/tex]:
We need to check the value of [tex]\( f'(x) \)[/tex] when [tex]\( x > 1 \)[/tex]. Specifically:
[tex]\[ f'(x) = 2x \][/tex]
For [tex]\( x > 1 \)[/tex], let's consider a point slightly greater than 1, say [tex]\( x = 1.1 \)[/tex].
4. Substitute [tex]\( x = 1.1 \)[/tex] into the derivative:
[tex]\[ f'(1.1) = 2 \times 1.1 = 2.2 \][/tex]
Since [tex]\( f'(1.1) = 2.2 \)[/tex] is positive, we can conclude that [tex]\( f(x) = x^2 \)[/tex] is increasing when [tex]\( x > 1 \)[/tex]. This is because the positive derivative indicates that the function's slope is positive, implying that the function is increasing in this interval.
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.