Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Connect with a community of experts ready to provide precise solutions to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To solve for the numbers, we start by setting up the given information:
We are provided with four numbers: 127, [tex]\( x \)[/tex], [tex]\( x + 1 \)[/tex], and [tex]\( 2x \)[/tex]. We also know that the mean of these four numbers is 180.
The formula for the mean of four numbers is given by:
[tex]\[ \text{Mean} = \frac{\text{Sum of the numbers}}{4} \][/tex]
Inserting the specific numbers into this formula, we have:
[tex]\[ 180 = \frac{127 + x + (x + 1) + 2x}{4} \][/tex]
First, combine the terms in the numerator:
[tex]\[ 127 + x + x + 1 + 2x = 127 + 4x + 1 \][/tex]
Simplify further:
[tex]\[ 127 + 4x + 1 = 128 + 4x \][/tex]
Now, substitute this back into the mean equation:
[tex]\[ 180 = \frac{128 + 4x}{4} \][/tex]
To eliminate the denominator, multiply both sides by 4:
[tex]\[ 180 \times 4 = 128 + 4x \][/tex]
[tex]\[ 720 = 128 + 4x \][/tex]
Next, isolate the term with [tex]\( x \)[/tex] by subtracting 128 from both sides:
[tex]\[ 720 - 128 = 4x \][/tex]
[tex]\[ 592 = 4x \][/tex]
Finally, solve for [tex]\( x \)[/tex] by dividing both sides by 4:
[tex]\[ x = \frac{592}{4} \][/tex]
[tex]\[ x = 148 \][/tex]
Now that we have [tex]\( x = 148 \)[/tex], we can find the other numbers:
1. [tex]\( x = 148 \)[/tex]
2. [tex]\( x + 1 = 148 + 1 = 149 \)[/tex]
3. [tex]\( 2x = 2 \times 148 = 296 \)[/tex]
Thus, the four numbers are:
- 127
- 148
- 149
- 296
We are provided with four numbers: 127, [tex]\( x \)[/tex], [tex]\( x + 1 \)[/tex], and [tex]\( 2x \)[/tex]. We also know that the mean of these four numbers is 180.
The formula for the mean of four numbers is given by:
[tex]\[ \text{Mean} = \frac{\text{Sum of the numbers}}{4} \][/tex]
Inserting the specific numbers into this formula, we have:
[tex]\[ 180 = \frac{127 + x + (x + 1) + 2x}{4} \][/tex]
First, combine the terms in the numerator:
[tex]\[ 127 + x + x + 1 + 2x = 127 + 4x + 1 \][/tex]
Simplify further:
[tex]\[ 127 + 4x + 1 = 128 + 4x \][/tex]
Now, substitute this back into the mean equation:
[tex]\[ 180 = \frac{128 + 4x}{4} \][/tex]
To eliminate the denominator, multiply both sides by 4:
[tex]\[ 180 \times 4 = 128 + 4x \][/tex]
[tex]\[ 720 = 128 + 4x \][/tex]
Next, isolate the term with [tex]\( x \)[/tex] by subtracting 128 from both sides:
[tex]\[ 720 - 128 = 4x \][/tex]
[tex]\[ 592 = 4x \][/tex]
Finally, solve for [tex]\( x \)[/tex] by dividing both sides by 4:
[tex]\[ x = \frac{592}{4} \][/tex]
[tex]\[ x = 148 \][/tex]
Now that we have [tex]\( x = 148 \)[/tex], we can find the other numbers:
1. [tex]\( x = 148 \)[/tex]
2. [tex]\( x + 1 = 148 + 1 = 149 \)[/tex]
3. [tex]\( 2x = 2 \times 148 = 296 \)[/tex]
Thus, the four numbers are:
- 127
- 148
- 149
- 296
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.