Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Discover a wealth of knowledge from experts across different disciplines on our comprehensive Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
To determine which ordered pairs could be points on a line parallel to one with a slope of [tex]\(-\frac{3}{5}\)[/tex], we need to calculate the slope between each pair of points given and check whether they match the original slope.
Recall that the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's go through each pair of points step by step:
1. Points [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 8}{2 - (-8)} = \frac{2 - 8}{2 + 8} = \frac{-6}{10} = -\frac{3}{5} \][/tex]
The slope here is [tex]\(-\frac{3}{5}\)[/tex], which matches the original slope.
2. Points [tex]\((-5, -1)\)[/tex] and [tex]\((0, 2)\)[/tex]:
[tex]\[ m = \frac{2 - (-1)}{0 - (-5)} = \frac{2 + 1}{0 + 5} = \frac{3}{5} \][/tex]
The slope here is [tex]\(\frac{3}{5}\)[/tex], which does not match the original slope of [tex]\(-\frac{3}{5}\)[/tex].
3. Points [tex]\((-3, 6)\)[/tex] and [tex]\((6, -9)\)[/tex]:
[tex]\[ m = \frac{-9 - 6}{6 - (-3)} = \frac{-9 - 6}{6 + 3} = \frac{-15}{9} = -\frac{5}{3} \][/tex]
The slope here is [tex]\(-\frac{5}{3}\)[/tex], which does not match the original slope.
4. Points [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - 1}{3 - (-2)} = \frac{-2 - 1}{3 + 2} = \frac{-3}{5} \][/tex]
The slope here is [tex]\(-\frac{3}{5}\)[/tex], which matches the original slope.
5. Points [tex]\((0, 2)\)[/tex] and [tex]\((5, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 2}{5 - 0} = \frac{3}{5} \][/tex]
The slope here is [tex]\(\frac{3}{5}\)[/tex], which does not match the original slope.
From the calculations, the ordered pairs that have a slope of [tex]\(-\frac{3}{5}\)[/tex] and thus are parallel to the given line are:
- [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]
- [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]
Therefore, the correct options are:
- [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]
- [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]
Recall that the slope [tex]\(m\)[/tex] between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is given by:
[tex]\[ m = \frac{y_2 - y_1}{x_2 - x_1} \][/tex]
Let's go through each pair of points step by step:
1. Points [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]:
[tex]\[ m = \frac{2 - 8}{2 - (-8)} = \frac{2 - 8}{2 + 8} = \frac{-6}{10} = -\frac{3}{5} \][/tex]
The slope here is [tex]\(-\frac{3}{5}\)[/tex], which matches the original slope.
2. Points [tex]\((-5, -1)\)[/tex] and [tex]\((0, 2)\)[/tex]:
[tex]\[ m = \frac{2 - (-1)}{0 - (-5)} = \frac{2 + 1}{0 + 5} = \frac{3}{5} \][/tex]
The slope here is [tex]\(\frac{3}{5}\)[/tex], which does not match the original slope of [tex]\(-\frac{3}{5}\)[/tex].
3. Points [tex]\((-3, 6)\)[/tex] and [tex]\((6, -9)\)[/tex]:
[tex]\[ m = \frac{-9 - 6}{6 - (-3)} = \frac{-9 - 6}{6 + 3} = \frac{-15}{9} = -\frac{5}{3} \][/tex]
The slope here is [tex]\(-\frac{5}{3}\)[/tex], which does not match the original slope.
4. Points [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]:
[tex]\[ m = \frac{-2 - 1}{3 - (-2)} = \frac{-2 - 1}{3 + 2} = \frac{-3}{5} \][/tex]
The slope here is [tex]\(-\frac{3}{5}\)[/tex], which matches the original slope.
5. Points [tex]\((0, 2)\)[/tex] and [tex]\((5, 5)\)[/tex]:
[tex]\[ m = \frac{5 - 2}{5 - 0} = \frac{3}{5} \][/tex]
The slope here is [tex]\(\frac{3}{5}\)[/tex], which does not match the original slope.
From the calculations, the ordered pairs that have a slope of [tex]\(-\frac{3}{5}\)[/tex] and thus are parallel to the given line are:
- [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]
- [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]
Therefore, the correct options are:
- [tex]\((-8, 8)\)[/tex] and [tex]\((2, 2)\)[/tex]
- [tex]\((-2, 1)\)[/tex] and [tex]\((3, -2)\)[/tex]
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.