Find the best answers to your questions at Westonci.ca, where experts and enthusiasts provide accurate, reliable information. Our platform offers a seamless experience for finding reliable answers from a network of experienced professionals. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
Answer:
[tex]1296[/tex] would be the term immediately after the term [tex]216[/tex].
Step-by-step explanation:
The recursive formula for the [tex]n[/tex]th term a geometric series is:
[tex]a_{n} = r\, a_{n - 1}[/tex],
Where:
- [tex]r[/tex] is the common ratio of this series, and
- [tex]a_{n - 1}[/tex] denotes the [tex](n-1)[/tex]th term of the series, which is the term immediately before the [tex]n[/tex]th term.
The common ratio of a geometric series is the ratio between each term and the term before it- for example, the ratio between the term [tex]36[/tex] and the term right before it, [tex]6[/tex]. Using this property, the common ratio of the geometric series in this question would be:
[tex]\displaystyle r = \frac{36}{6} = 6[/tex].
In this question, if [tex]a_{n}[/tex] represents the unknown term, [tex]216[/tex] would be the value of [tex]a_{n-1}[/tex], which is immediately before that unknown term. Since the common ratio is [tex]r = 6[/tex], the value of the unknown term [tex]a_{n}[/tex] can be found using the recursive formula as follows:
[tex]a_{n} = r\, a_{n - 1} = (6) \times (216) = 1296[/tex].
Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.