Discover answers to your most pressing questions at Westonci.ca, the ultimate Q&A platform that connects you with expert solutions. Explore in-depth answers to your questions from a knowledgeable community of experts across different fields. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform.
Sagot :
Sure! Let's find the limit:
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} \][/tex]
### Step 1: Substitute [tex]\(x = 1\)[/tex]
First, we should substitute [tex]\(x = 1\)[/tex] into the expression to see if it yields a determinate form:
[tex]\[ \frac{1^2 + 1}{1^2 - 3(1) + 2} = \frac{1 + 1}{1 - 3 + 2} = \frac{2}{0} \][/tex]
Since the denominator becomes 0, the expression is undefined at [tex]\( x = 1 \)[/tex]. Hence, we must find the limit using other methods, since directly substituting gives an indeterminate form of [tex]\(\frac{2}{0}\)[/tex].
### Step 2: Factor the Denominator
Factor the denominator [tex]\(x^2 - 3x + 2\)[/tex]:
[tex]\[ x^2 - 3x + 2 = (x - 1)(x - 2) \][/tex]
Now rewrite the original function with the factored form:
[tex]\[ \frac{x^2 + 1}{x^2 - 3x + 2} = \frac{x^2 + 1}{(x - 1)(x - 2)} \][/tex]
### Step 3: Analyze the Behavior Around [tex]\( x = 1 \)[/tex]
Since the denominator becomes zero at [tex]\( x = 1 \)[/tex], let's analyze the behavior of the function as [tex]\( x \)[/tex] approaches 1 from the left ([tex]\( x \to 1^- \)[/tex]) and from the right ([tex]\( x \to 1^+ \)[/tex]).
#### As [tex]\( x \to 1^- \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly negative (since [tex]\( x < 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 1 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be positive but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{+0} \)[/tex] which indicates [tex]\( +\infty \)[/tex].
#### As [tex]\( x \to 1^+ \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly positive (since [tex]\( x > 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 2 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be negative but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{-0} \)[/tex] which indicates [tex]\( -\infty \)[/tex].
### Conclusion:
Since as [tex]\( x \)[/tex] approaches 1 from the left, the function approaches [tex]\( +\infty \)[/tex], and as [tex]\( x \)[/tex] approaches 1 from the right, the function approaches [tex]\( -\infty \)[/tex], the overall limit does not exist in the standard sense. However, in one-sided limits, and for certain conventions, it can be summarized as:
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} = -\infty \][/tex]
Thus, the given limit evaluates to:
[tex]\[ \boxed{-\infty} \][/tex]
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} \][/tex]
### Step 1: Substitute [tex]\(x = 1\)[/tex]
First, we should substitute [tex]\(x = 1\)[/tex] into the expression to see if it yields a determinate form:
[tex]\[ \frac{1^2 + 1}{1^2 - 3(1) + 2} = \frac{1 + 1}{1 - 3 + 2} = \frac{2}{0} \][/tex]
Since the denominator becomes 0, the expression is undefined at [tex]\( x = 1 \)[/tex]. Hence, we must find the limit using other methods, since directly substituting gives an indeterminate form of [tex]\(\frac{2}{0}\)[/tex].
### Step 2: Factor the Denominator
Factor the denominator [tex]\(x^2 - 3x + 2\)[/tex]:
[tex]\[ x^2 - 3x + 2 = (x - 1)(x - 2) \][/tex]
Now rewrite the original function with the factored form:
[tex]\[ \frac{x^2 + 1}{x^2 - 3x + 2} = \frac{x^2 + 1}{(x - 1)(x - 2)} \][/tex]
### Step 3: Analyze the Behavior Around [tex]\( x = 1 \)[/tex]
Since the denominator becomes zero at [tex]\( x = 1 \)[/tex], let's analyze the behavior of the function as [tex]\( x \)[/tex] approaches 1 from the left ([tex]\( x \to 1^- \)[/tex]) and from the right ([tex]\( x \to 1^+ \)[/tex]).
#### As [tex]\( x \to 1^- \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly negative (since [tex]\( x < 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 1 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be positive but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{+0} \)[/tex] which indicates [tex]\( +\infty \)[/tex].
#### As [tex]\( x \to 1^+ \)[/tex]:
- Numerator: [tex]\( x^2 + 1 \to 1 + 1 = 2 \)[/tex]
- Denominator: [tex]\( (x - 1)(x - 2) \)[/tex] where [tex]\( x - 1 \)[/tex] approaches 0 but is slightly positive (since [tex]\( x > 1 \)[/tex]), and [tex]\( x - 2 \)[/tex] is negative when [tex]\( x < 2 \)[/tex].
So, [tex]\((x - 1)(x - 2)\)[/tex] will be negative but very close to 0.
Thus, [tex]\( \frac{2}{(x - 1)(x - 2)} \to \frac{2}{-0} \)[/tex] which indicates [tex]\( -\infty \)[/tex].
### Conclusion:
Since as [tex]\( x \)[/tex] approaches 1 from the left, the function approaches [tex]\( +\infty \)[/tex], and as [tex]\( x \)[/tex] approaches 1 from the right, the function approaches [tex]\( -\infty \)[/tex], the overall limit does not exist in the standard sense. However, in one-sided limits, and for certain conventions, it can be summarized as:
[tex]\[ \lim_{{x \to 1}} \frac{x^2 + 1}{x^2 - 3x + 2} = -\infty \][/tex]
Thus, the given limit evaluates to:
[tex]\[ \boxed{-\infty} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.