Welcome to Westonci.ca, the place where your questions find answers from a community of knowledgeable experts. Connect with professionals on our platform to receive accurate answers to your questions quickly and efficiently. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To find the equation of a line passing through the point [tex]\((-1,2)\)[/tex] and parallel to the line [tex]\(y = x + 4\)[/tex], follow these steps:
1. Identify the slope of the given line:
The equation given is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Here, [tex]\(m = 1\)[/tex].
2. Use the slope of the parallel line:
Since parallel lines have the same slope, the slope of the line we need to find will also be [tex]\(1\)[/tex].
3. Apply the point-slope form of the line equation:
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Here, [tex]\((x_1, y_1) = (-1, 2)\)[/tex] and [tex]\(m = 1\)[/tex].
4. Substitute the given point and the slope into the point-slope form:
Substituting [tex]\((-1, 2)\)[/tex] and [tex]\(m = 1\)[/tex] into the equation:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]
5. Simplify the equation:
[tex]\[ y - 2 = 1(x + 1) \][/tex]
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = x + 1 + 2 \][/tex]
[tex]\[ y = x + 3 \][/tex]
Hence, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ y = x + 3 \][/tex]
1. Identify the slope of the given line:
The equation given is [tex]\(y = x + 4\)[/tex]. This equation is in the slope-intercept form [tex]\(y = mx + b\)[/tex], where [tex]\(m\)[/tex] is the slope. Here, [tex]\(m = 1\)[/tex].
2. Use the slope of the parallel line:
Since parallel lines have the same slope, the slope of the line we need to find will also be [tex]\(1\)[/tex].
3. Apply the point-slope form of the line equation:
The point-slope form of the equation of a line is:
[tex]\[ y - y_1 = m(x - x_1) \][/tex]
where [tex]\((x_1, y_1)\)[/tex] is a point on the line and [tex]\(m\)[/tex] is the slope. Here, [tex]\((x_1, y_1) = (-1, 2)\)[/tex] and [tex]\(m = 1\)[/tex].
4. Substitute the given point and the slope into the point-slope form:
Substituting [tex]\((-1, 2)\)[/tex] and [tex]\(m = 1\)[/tex] into the equation:
[tex]\[ y - 2 = 1(x - (-1)) \][/tex]
5. Simplify the equation:
[tex]\[ y - 2 = 1(x + 1) \][/tex]
[tex]\[ y - 2 = x + 1 \][/tex]
Add 2 to both sides to isolate [tex]\(y\)[/tex]:
[tex]\[ y = x + 1 + 2 \][/tex]
[tex]\[ y = x + 3 \][/tex]
Hence, the equation of the line that passes through the point [tex]\((-1, 2)\)[/tex] and is parallel to the line [tex]\(y = x + 4\)[/tex] is:
[tex]\[ y = x + 3 \][/tex]
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.