At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Get detailed and accurate answers to your questions from a dedicated community of experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
To determine how many times larger the volume of the large sphere is in comparison to the volume of the small sphere, let's go through the problem step by step.
1. Volume of a Sphere Formula:
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
where [tex]\( r \)[/tex] is the radius of the sphere.
2. Volume of the Small Sphere:
Let [tex]\( r \)[/tex] be the radius of the small sphere. The volume of this small sphere ([tex]\( V_{\text{small}} \)[/tex]) is:
[tex]\[ V_{\text{small}} = \frac{4}{3} \pi r^3 \][/tex]
3. Volume of the Large Sphere:
The radius of the large sphere is three times the radius of the small sphere. Therefore, the radius of the large sphere is [tex]\( 3r \)[/tex]. The volume of the large sphere ([tex]\( V_{\text{large}} \)[/tex]) is:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (3r)^3 \][/tex]
Simplifying [tex]\( (3r)^3 \)[/tex]:
[tex]\[ (3r)^3 = 27r^3 \][/tex]
So the volume of the large sphere becomes:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (27r^3) \][/tex]
[tex]\[ V_{\text{large}} = 27 \left( \frac{4}{3} \pi r^3 \right) \][/tex]
[tex]\[ V_{\text{large}} = 27 V_{\text{small}} \][/tex]
4. Ratio of Volumes:
To find how many times the volume of the large sphere is larger than the volume of the small sphere, we compute the ratio [tex]\( \frac{V_{\text{large}}}{V_{\text{small}}} \)[/tex]:
[tex]\[ \frac{V_{\text{large}}}{V_{\text{small}}} = \frac{27 V_{\text{small}}}{V_{\text{small}}} = 27 \][/tex]
Thus, the volume of the large sphere is 27 times larger than the volume of the small sphere.
Answer:
[tex]\[ \boxed{27} \][/tex]
1. Volume of a Sphere Formula:
The volume [tex]\( V \)[/tex] of a sphere is given by the formula:
[tex]\[ V = \frac{4}{3} \pi r^3 \][/tex]
where [tex]\( r \)[/tex] is the radius of the sphere.
2. Volume of the Small Sphere:
Let [tex]\( r \)[/tex] be the radius of the small sphere. The volume of this small sphere ([tex]\( V_{\text{small}} \)[/tex]) is:
[tex]\[ V_{\text{small}} = \frac{4}{3} \pi r^3 \][/tex]
3. Volume of the Large Sphere:
The radius of the large sphere is three times the radius of the small sphere. Therefore, the radius of the large sphere is [tex]\( 3r \)[/tex]. The volume of the large sphere ([tex]\( V_{\text{large}} \)[/tex]) is:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (3r)^3 \][/tex]
Simplifying [tex]\( (3r)^3 \)[/tex]:
[tex]\[ (3r)^3 = 27r^3 \][/tex]
So the volume of the large sphere becomes:
[tex]\[ V_{\text{large}} = \frac{4}{3} \pi (27r^3) \][/tex]
[tex]\[ V_{\text{large}} = 27 \left( \frac{4}{3} \pi r^3 \right) \][/tex]
[tex]\[ V_{\text{large}} = 27 V_{\text{small}} \][/tex]
4. Ratio of Volumes:
To find how many times the volume of the large sphere is larger than the volume of the small sphere, we compute the ratio [tex]\( \frac{V_{\text{large}}}{V_{\text{small}}} \)[/tex]:
[tex]\[ \frac{V_{\text{large}}}{V_{\text{small}}} = \frac{27 V_{\text{small}}}{V_{\text{small}}} = 27 \][/tex]
Thus, the volume of the large sphere is 27 times larger than the volume of the small sphere.
Answer:
[tex]\[ \boxed{27} \][/tex]
Visit us again for up-to-date and reliable answers. We're always ready to assist you with your informational needs. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.